• Title/Summary/Keyword: Arc extinction

Search Result 37, Processing Time 0.024 seconds

Forming the Are at Opening contacts and Arc Extinction by External Magnetic Force (접점 개방시 아크 형성과 외부자계에 의한 효과적인 아크 소호)

  • Cho, Hyun-Kil;Lee, Eun-Woong;Kim, Jun-Ho;Lee, Hwa-Su
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.699-701
    • /
    • 2003
  • This paper compare the Townsend theory with the Molten metal bridge theory of Holm for the arc discharge at opening contacts. And we measured the arc voltage at opening contacts of the 3 types arc extinction unit used in DC magnetic contactor. So, we sure that the molten metal bridge contributes to form the arc. By the experiment of the 3 types arc extinction unit, we know that the magnetic force acting on the arc doesn't effect forming arc but contribut the arc extinction.

  • PDF

Study of the Compressible Nozzle Flow in a Gas Circuit Breaker (가스차단기의 소호노즐 내부에서 발생하는 압축성 유동에 관한 연구)

  • Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.123-126
    • /
    • 2002
  • Very frequently the compressible flow in an extinction nozzle of gas circuit breaker is simulated under no arc assumption, which can be reasonable for both high and low current breakings. In the present study, computations are performed to investigate the major features of the compressible flows inside the arc extinction nozzle of gas circuit breaker. A fully implicit finite volume scheme is applied to solve the two-dimensional, steady, compressible, Wavier-Stokes equations. The computed results are validated with the previous experimental data available. Several types of turbulence models are explored to reasonably predict the complicated flows inside the arc extinction nozzle. The obtained results show that the shock wave boundary layer interaction inside the nozzle significantly influences the whole performance of the gas breaker.

  • PDF

DC Arc Extinction Using External Magnetic Field in Switching Device

  • Cho Hyun-Kil;Lee Eun-Woong;Jeong Jong-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.306-311
    • /
    • 2005
  • In this paper, the electromagnetic force acting in the arc column of 3 different extinction units is compared with using the FEM (Finite Element Method) and the arc velocity is calculated by the drag force of the fluid mechanics. The experiment for breaking the arc current was performed in each model at 100 volts in order to measure the arcing time. The outcome was compared with the computing value. As a result, this paper proposes that the divided U-shaped grid is able to shorten arcing time and improve the electric performance. It also suggests a methodology for comparing and analyzing the result obtained by simulation and experiment.

Modelling of Secondary Arc Using EMTP-RV (EMTP-RV를 이용한 2차 아크 모델링)

  • Oh, Yun-Sik;Kang, Sung-Bum;Seo, Hun-Chul;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.937-943
    • /
    • 2012
  • Most of faults occurred in transmission lines are single-phase to ground faults and transient faults. Single-phase auto reclosing is an appropriate scheme to maintain the system stability and restore the system effectively when those faults are occurred. In single-phase auto reclosing scheme, the secondary arc is generated after faulted phase is tripped to eliminate the fault and it is sustained by the capacitive and inductive coupling to the healthy phases. It is important to reclose the faulted phase after fully extinction of secondary arc because of the damage applied to system. Therefore, it is necessary to research on the detection of secondary arc extinction to ensure high success rate of reclosing. In this step, firstly, the accurate modelling of secondary arc should be performed. In this paper, the modelling of secondary arc is performed by using EMTP-RV and the simulation results show that the implemented model is correct and effective.

A Study on the Quantitative Evaluation of Arc Stability in AC SMAW (교류 피복 아크 용접에 있어서 아크 안정성의 정량적 평가에 관한 연구)

    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.125-135
    • /
    • 1998
  • The shielded metal arc welding (SMAW) by AC power source was performed to evaluate the arc stability by arc monitoring and analysing. In this study, the arc stability index was evaluated quantitatively by using he coefficient of resistance variation for welding time. This coefficient was obtained for the long time (20sec.) by analysing the waveforms of welding current, voltage and resistance. The coefficient was applied to indicate numerically the variation level of arc length and the degree of arc extinction. Using the coefficient of resistance variation in practical welding, the arc stability of the high titanium oxide electrode (KS E4313) turned out to be better than that of the low hydrogen electrode (KS E4316). In evaluating the skill level of welders by the coefficient, the horizontal fillet weaving welding became clear to be very discriminating because the higher level welder could weave in keeping constant arc length, but the lower level welder showed the characteristics of weaving with the unstable arc length. And it was confirmed that the welding defects as blow holes was formed when the arc stability index were high.

  • PDF

Analysis of Simulation Results for Secondary Arc in 765kV single transmission line (765kV 1회선 선로의 2차아크 모의결과 분석)

  • Ahn, S.P.;Kim, C.H.;Park, N.O.;Ju, H.J.;Shim, E.B.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.36-38
    • /
    • 2004
  • In many countries, including Korea, in order to transmit the more electric power, the higher transmission line voltage is inevitable. So, a rapid reclosing scheme is important for UHV transmission lines to ensure requirements for high reliability of main lines. But, because of the high voltage and long span of UHV lines, the secondary arc current flows across the fault point even after the interruption of the fault current. i.e. A critical aspect of reclosing operation is the extinction of the secondary arc since it must extinguish before successful reclosure can occur. In Korea transmission lines, it is scheduled to energize 765kV single transmission line(79km) between Sin-Ansung S/S and Sin-Gapyeong S/S at June 2006. Therefore this paper analyzes characteristics of the secondary arc extinction on 765kV single transmission line using EMTP. Simulation results shows that the average value of the secondary arc is $30A_{rms}$ and the auto-extinction time of it is longer at closer point to Sin-Gapyeong S/S.

  • PDF

A Detection Scheme of a Secondary Arc Extinction Using Correlation of a Fault Voltage (고장 전압의 correlation을 이용한 2차 아크 소호 판별)

  • Jang, Won-Hyeok;Seo, Hun-Chul;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.340_341
    • /
    • 2009
  • This paper suggests a detection scheme of a secondary arc extinction using the peak value of a fault voltage estimated by correlation algorithms. The system implemented in this paper is based on a Korean 765 kV system and the suggested proposed scheme is tested on the system. The performance of the method is analyzed by using Electro-Magnetic Transients Program (EMTP)/ATPDraw.

  • PDF

The Arcing Faults Simulation and Adaptive Autoreclosure Strategy for 765 kV Transmission Line Protection (765 kV 송전선로 보호를 위한 아크사고 시뮬레이션 및 적응적 자동재폐로 대책)

  • Ahn, Sang-Pil;Kim, Chull-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1365-1373
    • /
    • 1999
  • In many countries including Korea, in order to transmit the more electric power, the higher transmission line voltage is inevitable. So, a rapid reclosing scheme is important for EHV/UHV transmission lines to ensure requirements for high reliability of main lines. A critical aspect of reclosing operation is the extinction of the secondary arc since it must extinguish before successful reclosure can occur. Therefore the accurate simulation techniques of arcing faults are of importance. And successful reclosing switching can be accomplished by adopting a proper method such as HSGS and hybrid scheme to reduce the secondary arc extinction time. First of all, this paper discusses a suggested arc model, which have time dependent resistance for primary arc and piecewise linear approximated arc model for secondary arc. And this simulation technique is applied to Korean 765 kV transmission lines. Also hybrid scheme is simulated and evaluated for the purpose of shortening dead time. For adaptive reclosing scheme, variable dead time control algorithm is suggested. Two kinds of algorithm are tested. One is max tracking algorithm and the other is rms tracking algorithm. According to simulation results, rms tracking has less errors than max tracking. Therefore rms tracking is applied to Korean 765 kV transmission lines with hybrid scheme.

  • PDF

Development of Estimation Model Are Stability Considering Arc Extinction with Multiple Regression Analysis in $CO_2$ Arc Welding ($CO_2$ 아크 용접에 있어서 다중회귀분석에 의한 아크 끊어짐을 고려한 아크 안정성 예측 모델 개발)

  • Gang, Mun-Jin;Lee, Se-Heon;U, Jae-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1885-1898
    • /
    • 2000
  • Welding quality is closely related to the arc state. So, it is very important to estimate the arc state in real time. In the short circuit transfer region of CO2 are welding, the spatter , as it is well known, is mainly generated on an instance of short circuit or on an instance that the are is ignited after short circuit, or on the cases of an instantaneous short circuit. If the short circuit period or the arc time is irregular, the spatter is generated more than it is regular. Thus there is a close relationship of the amount of the spatter generation with the arc stability. In this paper, to develop the index for estimating the arc stability in short circuit transfer range Of CO2 arc welding, the welding current and are voltage waveforms were measured and the spatter generated was captured and measured. The correlation analysis of the measured amount of the spatter with the factors (the components and the standard deviations of the components) was performed, and the factors that have a considerable influence on the spatter generation among all factors were selected. And some cases of models consisted of the factors were presented, and a mathematical index model which can make an estimation the amount of the spatter from these models with multiple regression analysis. Also, it was compared how much the amount of the spatter generated under the selected welding conditions do these index models fit, and the index model to estimate the arc stability which represent the spatter generation most appropriately was developed