• Title/Summary/Keyword: Arc Thermal Spray coating

Search Result 25, Processing Time 0.03 seconds

Study on Corrosion Resistance Performance of Zn Coating Applied by Arc Thermal and Plasma Arc Spray Process in Artificial Ocean Water (인공해양환경에서 Arc Thermal and Plasma Arc Spray 공법이 적용된 Zn 코팅 강재의 내식성능 평가에 관한 연구)

  • Jannat, Adnin Raihana;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.83-84
    • /
    • 2020
  • In present study, we have deposited the Zinc coating using arc thermal spray and plasma arc spray processes onto the steel substrate and durability of the deposited coating was evaluated. The bond adhesion result shows that plasma arc sprayed Zn coating exhibited higher in its value compared to arc thermal spray. SEM shows that Zn coating deposited by plasma arc process is more compact, less porous and adherent compare to arc spray process. The corrosion resistance properties are evaluated in artificial ocean water solution with exposure periods. EIS results show that total impedance at 0.01 Hz of plasma arc sprayed coating is higher than arc thermal spray owing to the compact and less porous morphology. It is concluded that plasma arc sprayed Zn coating is better than arc thermal spray process.

  • PDF

Performance of Al-Zn Coating by Arc Thermal and Plasma arc Thermal Spray Processes in 3.5% NaCl Solution (3.5% NaCl에서 Arc Thermal and Plasma Arc Spray 공법이 적용된 Al- Zn 코팅 강재의 내 식 성능 평가에 관한 연구)

  • Jannat, Adnin Raihana;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.17-18
    • /
    • 2021
  • In the present study, Al-Zn coating was deposited by Arc thermal (AT) and plasma arc thermal (PAT) spray processes, and their corrosion characteristics were studied in 3.5% NaCl through electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and mechanical tests. The bond adhesion result showed that plasma arc sprayed coating had a higher value attributed to compact, dense, and less porous coating compared to arc thermal spray coating which contains defects/pores and uneven morphology as revealed by scanning electron microscope analysis. Electrochemical results revealed that the plasma arc sprayed coating had a high polarization resistance at early stage of immersion, suggesting its excellent corrosion protection performance.

  • PDF

Experimental Study on the Corrosion Behavior of Al Coatings Applied by Plasma Thermal Arc Spray under Simulated Environmental Conditions (모사 부식 환경에서 플라즈마 아크용사에 의한 Al 코팅의 부식특성에 관한 실험적 연구)

  • Jeong, Hwa-Rang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.559-570
    • /
    • 2023
  • The corrosion of structural steel used in the construction industry is increasing due to the industrialization where many aggressive ions released in the atmosphere. Therefore, in the present study Al coating was deposited by arc and plasma arc thermal spray process and compared their effectiveness in simulated weathering condition i.e. Society of Automotive Engineers(SAE) J2334 solution which mostly contain Cl- and CO32- ions. Different analytical techniques have been used to characterize the coating and draw the corrosion mechanism. The Al coating deposited by plasma arc thermal spray process exhibited uniform, dense and layer by layer deposition resulting higher bond adhesion values. The open circuit potential(OCP) of Al coating deposited this process is exhibited more electropositive values than arc thermal spray process in SAE J2334 solution with immersion periods. The total impedance of plasma arc thermal spray process exhibited higher than arc thermal spray process. The corrosion rate of the plasma arc thermal sprayed Al coating is reduced by 20% compared to arc thermal spray process after 23 days of immersion in SAE J2334 solution.

Electrochemical Characteristics of Arc Zn Thermal Spray Coating Layer in Sea Water (해수 내 아크 아연 용사코팅 층의 전기화학적 특성)

  • Park, Il-Cho;Seo, Gwang-Cheol;Lee, Gyeong-Woo;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.343-348
    • /
    • 2015
  • In this paper, arc Zn thermal spray coating was carried out on the SS400 steel, and then various electrochemical characteristics and surface damage behavior of Zn thermal spray coating layer were analyzed. As the results, the potential of Zn thermal spray coating layer presented driving voltage above 300 mV compare to that of SS400 steel. The passivity characteristic in anodic polarization curve was not presented. It was adequate to as sacrificial anode material. In the surface damage after galvanostatic experiments, uniform corrosion tendency of Zn thermal spray coating layer was clearly observed with acceleration of the dissolution reaction. In conclusion, Zn thermal spray coating could be determined to represent the corrosion protection effect by stable sacrificial anodic cathodic protection method in seawater because it had sufficient driving voltage and uniform corrosion damage tendency for the SS400 steel.

Cavitation Damage Characteristics of Al and Zn Arc Thermal Spray Coating Layers for Hull Structural Steel (선체 구조용 강재에 대한 Al과 Zn 아크용사코팅 층의 캐비테이션 손상 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.32-39
    • /
    • 2016
  • In this study, Al and Zn arc thermal spray coatings were carried out onto the substrate of SS400 steel to improve corrosion resistance and durability of hull structural steel for ship in marine environment. Therefore cavitation-erosion test was conducted to evaluate the durability of painted and thermal spray coated specimens. And then the damaged surface morphology and weight loss were obtained to compare with each other, respectively. As a result, the painted specimen was the poorest cavitation resistance characteristics because surface damage behavior appeared to be exfoliated in bulk shape during the cavitation experiment. And Zn thermal spray coating layer presented the significant surface damage depth due to relatively low surface hardness and local cavitation damage tendency. On the other hand, as a result of the weight loss analysis, the painting layer presented the poorest cavitation resistance and the Al thermal spray coating layer relatively showed the best results after cavitation experiment.

Anti Corrosive Performance of Al and Zn Coatings Deposited by Plasma Arc Thermal Spray Process in Artificial Ocean Water (인공해양환경에서 플라즈마 아크 용사 공법이 적용된 Al 및 Zn 코팅의 부식 방지 성능 평가)

  • Adnin, Raihana Jannat;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.52-53
    • /
    • 2020
  • The thermal spray coating process is being used to protect the metals and alloys from wear, abrasion, fatigue, tribology, and corrosion failure. Therefore, in the present study, Al and Zn was deposited by plasma arc thermal spray process onto the steel substrate and their performance was assessed. The bond adhesion result shows that Al coating has higher value attributed to compact, dense, and less porous compared to Zn coating which contain defects/pores and uneven morphology assessed by scanning electron microscopy (SEM). Electrochemical results show that the Al coating exhibited higher impedance value compared to Zn in artificial ocean water solution at prolonged exposure periods. However, both coatings show the increment in polarization resistance with exposure periods which reveal that porosity of coatings is filled by the corrosion products.

  • PDF

Electrochemical Characteristics in Sea Water of Al-3%Mg Arc Spray Coating Layer for Corrosion Protection with Sealing Treatment (후처리 적용에 따른 방식용 Al-3%Mg 용사코팅 층의 해수 내 전기화학적 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.974-980
    • /
    • 2015
  • Arc thermal spray coating using Al-3%Mg thermal spray wire was carried out to prevent steel from corrosion damage under the marine environment. Post-sealing was applied to Al-3%Mg spray coating treatment using organic/inorganic composite ceramics in order to improve the corrosion resistance of the as-sprayed coating. The results of various electrochemical experiments with sealing treatment indicated that the improvement in corrosion resistance was observed due to low current density in all applied potential range during anodic and cathodic polarization experiments. Futhermore, the natural potential measurement exhibited severe potential fluctuation due to influence of micro-crack presence on the surface of sealed thermal spray coating layer. In addition, the sealed layer was easily eliminated during anodic polarization. Nevertheless, Al-3%Mg spray coating layer improved corrosion resistance by sealing treatment because the sealed coating efficiency was determined to be 92.11%, indicating the exterior environment barrier effect which is based on the Tafel analysis.

Cavitation Damage Behavior of Inconel 625 Coating Layer by Arc Thermal Spraying Method in Sea Water (아크 용사법을 이용한 Inconel 625 코팅 층의 해수 내 캐비테이션 손상 거동)

  • Park, Il-Cho;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.349-353
    • /
    • 2015
  • In this paper, arc thermal spray coating was conducted onto the SS400 steel using Inconel 625 wires in order to improve the durability of marine steel structures, and then investigated cavitation damage behavior of Inconel 625 coating layer in sea water. For the Inconel 625 coating layer, surface hardness appeared similar to that of existing high velocity oxy-fuel coating technology with 380~480 HV, but the porosity of about 6 % was larger relatively. During the cavitation experiment, pit damages were originated and grown at the rough surface and pore defect area of Inconel 625 coating layer. And, after the 72 hours of experimental time, weight loss of Inconel 625 coating layer exhibited gradually increasing tendency due to surface damage effect of the undercut.

Effect of Sealing Treatment on Solid Particle Impingement Erosion of Al-Zn-Zr Thermal Spray Coating Layer (Al-Zn-Zr 용사코팅층의 고체입자 충돌 침식특성에 미치는 봉공처리의 영향)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.68-76
    • /
    • 2022
  • Several technologies are employed to protect substrates from corrosion and erosion damage. In particular, arc thermal spray coating technology is widely used as anti-corrosive technology for steel and concrete structures and is applied to offshore plants and petrochemical and drilling facilities. In this investigation, solid particle impingement erosion experiments were performed on an arc thermal spraying-coated specimen using 85% Al-14% Zn-1% Zr wire rod in KR-RA steel. This study investigated the effect of fluorosilicone sealing on the erosion resistance characteristics of the thermal spray coating layer. The erosion rates of the thermal spray-coated and sealed specimens were 4.1×10-4 and 8.5×10-4, respectively. At the beginning of the experiment, the fluorosilicone sealant was almost destroyed by the impact of the solid particles. The destruction time for the coating layer was 10 minutes for the thermal spray-coated specimen and 13 minutes for the sealed specimens, indicating that the sealed specimens had better erosion resistance characteristics to solid particle impingement.

Spray Coating Technology (스프레이 코팅 기술)

  • Lee, Chang-Hee
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.193-199
    • /
    • 2008
  • Spray coating is a versatile surface modification technology in which coating is built-up based on the successive deposition of micron-scaled particles. Depending on the coating materials, the coatings can meet the required mechanical properties, corrosion resistance, and other properties of base materials. Spraying processes are mainly classified into thermal and kinetic spraying according to their bonding mechanism and deposition characteristics. Specifically, thermal spraying process can be further classified into many categories based on the design and mechanism of the process, such as frame spraying, arc spraying, atmospheric plasma spraying (APS), and high velocity oxygen-fuel (HVOF) spraying, etc. Kinetic spraying or cold gas dynamic spraying is a newly emerging coating technique which is low-temperature and high-pressure coating process. In this paper, overall view of thermal and kinetic spray coating technologies is discussed in terms of fundamentals and industrial applications. The technological characteristics and bonding mechanism of each process are introduced. Deposition behavior and properties of technologically remarkable materials are reviewed. Furthermore, industrial applications of spray coating technology and its potentials are prospected.

  • PDF