• Title/Summary/Keyword: Arc River

Search Result 96, Processing Time 0.027 seconds

Analysis of Flood Inundation using GIS (GIS를 이용한 홍수범람 분석)

  • Shim, Soon-Bo;Kim, Joo-Hun;Lim, Gwang-Seop;Oh, Deuk-Keun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.132-142
    • /
    • 2003
  • A significant deficiency of most computer models used for stream floodplain analysis, is that the locations of structures impacted by flood waters, such as roads, buildings, and bridges, cannot be effectively compared to the floodplain location. The purpose of this study is the integration of the HEC River Analysis System(HEC-RAS) with ArcView geographic information system to develop a regional model for floodplain determination and representation. Also this study presents to enable two- and three-dimensional floodplain mapping and analysis in the ArcView. The methodology is applied to a Yeoju of Kyunggi-do, located in South Han River Basin. A digital terrain model is synthesized from HEC-RAS cross-sectional data and a digital elevation model of the study area. The flood plain data developed in ArcView was imported into HEC-RAS where it was combined with the field surveyed channel data in order to construct full floodplain cross sections that reflected accurate channel and overbank data for the HEC-RAS model. The flood plain limits could be expressed more accurately on ArcView by using water level data to be computed in HEC-RAS program. The computed water surface elevations and information of cross-section must be manually plotted in order to delineate floodplains. The resulting of this study provided a good representation of the general landscape and contained additional detail within the stream channel. Overall, the results of the study indicate that GIS combined with HEC-RAS is proven to be very useful and efficient for the automatic generation of flood maps, and an effective environment for floodplain mapping and analysis.

  • PDF

A study on the Computation of Lag Time from the Spectrum Analysis (Spectrum 해석(解析)을 통(通)한 지체시간(遲滯時間)의 산출(算出)에 관(關)한 연구(硏究))

  • Choi, Han Kuy;Hwang, Im Koo
    • Journal of Industrial Technology
    • /
    • v.4
    • /
    • pp.47-53
    • /
    • 1984
  • The cross correlation function arc applied find the Lag time between the rainfall and runoff at Chuncheon Dam which is located the upstream of the North Han River. In the result, we think that spectrum analysis is better than synthetic unit hydrograph of Synder ar the river basin with the actual data.

  • PDF

A Study on the Establishment of the Hydro-Parameter by Using GIS - in Tamjin River Basin - (GIS를 이용한 수문매개변수 설정에 관한 연구 - 탐진강 유역을 중심으로 -)

  • Hwang, Eui-Jin;Kim, Woo-Hyeok;Kim, Young-Gyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.1 s.24
    • /
    • pp.3-12
    • /
    • 2003
  • The main objective of this study is to extract the hydro-Parameter of the Tamjin River basin. A CIS is capable of extracting various hydrological factors from DEM. One of important tasks for hydrological analysis is the division of watershed. In this study, watershed itself and other geometric factors of watershed are extracted from DEM by using a CIS technique. The data of topographical map with scale of 1:25,000 and 1:250,000 in the Tamjin River basin is used for this study and it is converted to DEM date. Various forms of representation of spatial data are handled in main modules and a CRID module of ArcView. A GRID module is used on a stream in order to define watershed boundary. Based on the spatial analysis using those GIS technique, it would be possible to obtain the reasonable results of watershed characteristics. Also, the results show not only that GIS can aid watershed management, research and surveillance, but also that the geometric characteristics as parameters of watershed can be quantified more accurately and easily than conventional graphic methods. From the equations($Y=14632.87{\cdot}X^{-0.542444},\;Y=37014.1{\cdot}X^{-1.058808}$), it can be concluded that the optimal count of flow accumulation is 468 and cell size is 42m for spatial analysis by using GIS technique in Tamjin River basin.

  • PDF

Non-point Source Critical Area Analysis and Embedded RUSLE Model Development for Soil Loss Management in the Congaree River Basin in South Carolina, USA

  • Rhee, Jin-Young;Im, Jung-Ho
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.363-377
    • /
    • 2006
  • Mean annual soil loss was calculated and critical soil erosion areas were identified for the Congaree River Basin in South Carolina, USA using the Revised Universal Soil Loss Equation (RUSLE) model. In the RUSLE model, the mean annual soil loss (A) can be calculated by multiplying rainfall-runoff erosivity (R), soil erodibility (K), slope length and steepness (LS), crop-management (C), and support practice (P) factors. The critical soil erosion areas can be identified as the areas with soil loss amounts (A) greater than the soil loss tolerance (T) factor More than 10% of the total area was identified as a critical soil erosion area. Among seven subwatersheds within the Congaree River Basin, the urban areas of the Congaree Creek and the Gills Creek subwatersheds as well as the agricultural area of the Cedar Creek subwatershed appeared to be exposed to the risk of severe soil loss. As a prototype model for examining future effect of human and/or nature-induced changes on soil erosion, the RUSLE model customized for the area was embedded into ESRI ArcGIS ArcMap 9.0 using Visual Basic for Applications. Using the embedded model, users can modify C, LS, and P-factor values for each subwatershed by changing conditions such as land cover, canopy type, ground cover type, slope, type of agriculture, and agricultural practice types. The result mean annual soil loss and critical soil erosion areas can be compared to the ones with existing conditions and used for further soil loss management for the area.

  • PDF

Water Quality Modeling in the Delaware River Basin by SWAT(Soil and Water Assessment Tools) (SWAT를 이용한 델라웨어강 유역의 수질모델링)

  • Cho, Sung-Min;Lee, Myung-Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.39-57
    • /
    • 1995
  • The water quality model SWAT (Soil and Water Assessment Tool) was used in combination with GIS, Arc/Info and GRASS, to evaluate land use impacts in the Delaware River Basin in Pennsylvania. This paper describes application of GIS with the water quality model in the 250 square kilometer Brodhead Creek Watershed. Date used in water quality modeling include 1:250,000 digital elevation models (DEM), soil data, and monitored streamflow and curve numbers, and other input variables.

  • PDF

Estimation and Variation of an Exposed Population of a Vulnerable Group to High Ozone Episodes (고농도 오존발생시 취약계층 노출 인구 현황 및 변화)

  • Kang, Jae-Eun;Bang, Jin-Hee;Oh, In-Bo;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.697-705
    • /
    • 2014
  • The exposed population of a vulnerable group to high ozone episodes (exceeding 60 ppb/8h) was estimated in Busan metropolitan city from 2000 to 2010. The frequency of high ozone days at monitoring sites and the number of the population aged over 65 were used to calculate the accumulated (total, seasonal, and yearly) number of the exposed older population (EOP) to high ozone episodes during the study period based on administrative areas, by interpolation and zonal mean methods in ArcGIS software. The older population in this city had increased significantly from 2000 to 2010 (representing over 10% of the total population in 2010). The vulnerable areas (e.g. the eastern area of the city) of the EOP to high ozone episodes were different from the areas with frequent high ozone episodes (e.g., the western area) due to the increase of the older population in particular areas. The difference was more significant in spring than in any other season, and in 2010 than in previous years (2000 and 2005).

RAUT: An end-to-end tool for automated parsing and uploading river cross-sectional survey in AutoCAD format to river information system for supporting HEC-RAS operation (하천정비기본계획 CAD 형식 단면 측량자료 자동 추출 및 하천공간 데이터베이스 업로딩과 HEC-RAS 지원을 위한 RAUT 툴 개발)

  • Kim, Kyungdong;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1339-1348
    • /
    • 2021
  • In accordance with the River Law, the basic river maintenance plan is established every 5-10 years with a considerable national budget for domestic rivers, and various river surveys such as the river section required for HEC-RAS simulation for flood level calculation are being conducted. However, river survey data are provided only in the form of a pdf report to the River Management Geographic Information System (RIMGIS), and the original data are distributedly owned by designers who performed the river maintenance plan in CAD format. It is a situation that the usability for other purposes is considerably lowered. In addition, when using surveyed CAD-type cross-sectional data for HEC-RAS, tools such as 'Dream' are used, but the reality is that time and cost are almost as close as manual work. In this study, RAUT (River Information Auto Upload Tool), a tool that can solve these problems, was developed. First, the RAUT tool attempted to automate the complicated steps of manually inputting CAD survey data and simulating the input data of the HEC-RAS one-dimensional model used in establishing the basic river plan in practice. Second, it is possible to directly read CAD survey data, which is river spatial information, and automatically upload it to the river spatial information DB based on the standard data model (ArcRiver), enabling the management of river survey data in the river maintenance plan at the national level. In other words, if RIMGIS uses a tool such as RAUT, it will be able to systematically manage national river survey data such as river section. The developed RAUT reads the river spatial information CAD data of the river maintenance master plan targeting the Jeju-do agar basin, builds it into a mySQL-based spatial DB, and automatically generates topographic data for HEC-RAS one-dimensional simulation from the built DB. A pilot process was implemented.

Auto Calibration of Water Quality Modeling Using NGIS (NGIS자료와 연계한 수질모의 결과의 자동보정)

  • Han, Kun Yeun;Lee, Chang Hee;Kim, Kang Mo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1400-1403
    • /
    • 2004
  • The current industrial development and the Increase of population along Nakdong River have produced a rapid Increase of wastewater discharge. This has resulted in problem of water quality control and management. Although many efforts have been carried out, water quality has not significantly improved. The goal of this study is to design a NGIS-based water quality management system for the scientific water quality control and management in the Nakdong River. For general water quality analysis, QULA2E model was applied to the Nakdong River. A sensitivity analysis was made to determine significant parameters and an optimization was made to estimate optimal values. The calibration and verification were performed by using observed water quality data for Nakdong River. A water qualify management system for Nakdong River was made by connecting the QUAL2E model to ArcView. It allows a Windows-based Graphic User Interface(GUI) to implement all operation with regard to water quality analysis. The modeling system in this study will be an efficient NGIS for planning of water quality management.

  • PDF

Development of GIS-based Method for Estimating and Representing Stream Slopes Along the River Network (GIS 기반 하천경사 산정 및 하천망에 따른 표출 방식 개발)

  • You, Ho-Jun;Kim, Dong-Su;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.725-738
    • /
    • 2012
  • Recently, a variety of GIS-based tools enabling to generate topographic parameters for hydrologic and hydraulic researches have been developed. However, most of GIS-based tools are usually insufficient to estimate and visualize river channel slopes especially along the river network, which can be possibly utilized for many hydraulic equations such as Manning's formula. Many existing GIS-based tools have simply averaged cell-based slopes for the other advanced level of hydrologic units as likely as the mean watershed slope, thus that the river channel slope from the simple approach resulted in the inaccurate channel slope particularly for the mountain region where the slope varies significantly along the downstream direction. The paper aims to provide several more advanced GIS-based methodologies to assess the river channel slopes along the given river network. The developed algorithms were integrated with a newly developed tool named RiverSlope, which adapted theoretical formulas of river hydraulics to calculate channel slopes. For the study area, Han stream in the Jeju island was selected, where the channel slopes have a tendency to rapidly change the upstream near the Halla mountain and sustain the mild slope adjacent to watershed outlet heading for the ocean. The paper compared the simple slope method from the Arc Hydro, with other more complicated methods. The results are discussed to decide better approaches based on the given conditions.

GIS- Based Predictive Model for Measure of Environmental Pollutant (GIS를 이용한 환경오염의 예측 모델)

  • Lee, Ja-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.2
    • /
    • pp.114-125
    • /
    • 2008
  • Colored dissolved organic matter(CDOM) is an important component of ocean color that can be used as an invaluable tool in water quality and ocean color studies. With the largest source of coastal CDOM appearing to be from freshwater discharge into the ocean, coastal predictive models will do much to refine our knowledge about major processes that control CDOM distributions in coastal waters and provide a better insight into the global carbon cycle. This study aims at developing a GIS-based watershed-scale predictive model of CDOM distributions in Neponset river watersheds that can be used to appraise our understanding of CDOM sources and distributions in coastal waters and predict the response of CDOM concentration to changes in land use patterns. Weighting factors are developed for CDOM freshwater sources after extensive groundtruthing from various landuse types in the watershed. This model makes use of a publicly available DEM(Digital elevation model) as the base data for analysis. Stream networks, discharge, and land use data are used from public repositories while sub- watershed delineation, pour-points, and land use parcels are generated using Spatial Analysis of ArcGIS 9.2 to estimate the CDOM loading from various sources to the lower tributaries of rivers. The Neponset Watershed in eastern Massachusetts is selected as the site for development of the model.

  • PDF