• 제목/요약/키워드: Arc Interruption

검색결과 69건 처리시간 0.034초

열파퍼식 가스차단기에서 발생하는 아크 플라즈마에 의한 열유동 특성 (Thermal Flow Characteristics Driven by Arc Plasmas in a Thermal Puffer Type GCB)

  • 이종철;김윤제
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권11호
    • /
    • pp.527-532
    • /
    • 2005
  • During the last ten years the new interruption techniques, which use the arc energy itself to increase the pressure inside a chamber by the PTFE nozzle ablation, have displaced the puffer circuit breakers due to reduced driving forces and better maintainability. In this paper, we have investigated the thermal flow characteristics inside a thermal puffer type gas circuit breaker by solving the Wavier-Stokes equations coupled with Maxwell's equations for considering all instabilities effects such as turbulence and Lorentz forces by transient arc plasmas. These relative inexpensive computer simulations might help the engineer research and design the new interrupter in order to downscale and uprating the GIS integral.

전산수치해석을 통한 가스차단기의 차단성능 평가 (Evalution of Current interrupting capability in GCB by computational approach)

  • 최영길;이광식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1677-1681
    • /
    • 2002
  • A computational approach of the arc quenching process in GCB was developed. it is capable to calculates the thermodynamic quantities of the gas as a function of time taking into account of all spaces concerned with the arc quenching. Basically using so-called FLIC method, this program adoptes 'Simplified Enthalpy Arc Model', which is somewhat modified. And, to examine whether our works were done properly, it was simulated the whole process of the arc quenching that is based on self-flow generation phenomena/current interruption in a thermal expansion type circuit breaker. This program was verified by experiments, both showed fairly good agreement.

  • PDF

Interrupting characteristics of the transformer superconducting fault current limiter

  • Hwang, S.H.;Choi, H.W.;Jeong, I.S.;Choi, H.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권4호
    • /
    • pp.40-44
    • /
    • 2017
  • This paper analyzed the fault current limiting characteristics of the previously proposed transformer superconducting fault current limiter (TSFCL) interruption system according to its transformer type. The TSFCL interruption system is an interruption technology that combines a TSFCL, which uses a transformer and a superconductor, and a mechanical DC circuit breaker. This technology first limits the fault current using the inductance of the transformer winding and the quench characteristics of the superconductor. The limited fault current is then interrupted by a mechanical DC circuit breaker. The magnitude of the limited fault current can be controlled by the quench resistance of the superconductor in the TSFCL and the turns ratio of the transformer. When the fault current is controlled using a superconductor, additional costs are incurred due to the cooling vessel and the length of the superconductor. When the fault current is controlled using step-up and step-down transformers, however, it is possible to control the fault current more economically than using the superconductor. The TSFCL interruption system was designed using PSCAD/EMTDC-based analysis software, and the fault current limiting characteristics according to the type of the transformer were analyzed. The turns ratios of the step-up and step-down transformers were set to 1:2 and 2:1. The results were compared with those of a transformer with a 1:1 turns ratio.

사고전압 감지형 아크차단 제어회로 개발 (Development of Arc Fault Interruption Control Circuit of Fault Voltage Sensing Type)

  • 곽동걸;변재기;이봉섭
    • 한국화재소방학회논문지
    • /
    • 제27권2호
    • /
    • pp.1-5
    • /
    • 2013
  • 본 논문은 사고전압 감지형의 아크차단 제어회로에 대한 연구로써, 전기사고 발생 시 선간전압의 순간적인 전압감쇠를 감지하여 기존 차단기를 동작시키는 전압감지형 전기화재 예방장치이다. 현재 저압배전 계통에 사용중인 누전차단기, 배선용차단기 그리고 RCD 등은 전기화재의 주요 요인인 아크사고에 대해 보호능력이 없는 것으로 분석된다. 본 논문에서는 이러한 문제점들을 개선하기위하여 이전의 전류감지에 의한 아크사고 차단방식이 아닌 사고발생 시 전압파형의 왜곡을 이용한 새로운 전압감지형 아크차단 제어회로를 개발하여 전기화재를 예방하고자 한다. 제안한 아크차단 제어회로는 소형 경량으로 제작되는 장점과 다양한 동작분석을 통하여 그 실용성을 검증하였다.

병렬아크의 고속차단에 관한 연구 (A Study on the High Speed Interruption of Parallel Arcing)

  • 길경석;지홍근;박대원;김일권;김영일;조영진
    • 조명전기설비학회논문지
    • /
    • 제22권12호
    • /
    • pp.95-100
    • /
    • 2008
  • 기존의 누전차단기는 병렬아크에 대해서 차단을 실패하거나 차단시간이 결어지는 결함이 있었다. 본 논문에서는 저압 옥내배선 계통에서 병렬아크를 모의하여 기존 누전차단기의 차단특성을 분석하고, 병렬아크 검출에 적합한 공심형 전류센서와 신호변환회로를 설계하여 기존 방식의 누전차단기에 적용하였다. 제안한 방식은 병렬아크의 발생위치와 관계없이 누전차단기를 동작시켰으며, 차단시간은 아크가 발생한 위상에 따라 $1.74{\sim}8.3[ms]$의 범위로 기존 차단기에 비해 약 5배 빠른 특성이다.

아크회전과 열팽창 방식을 적용한 소호부에 대한 아크유동 해석 (The development of computational fluid dynamics tools for thermal expansion type interrupter with the arc rotary)

  • ;이방욱;서정민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.813-815
    • /
    • 2000
  • This paper is concerned with the development of PC based computer simulation and design tools for auto-expansion SF6 circuit breaker with the arc rotary. The simulation model takes into account radiation transport, turbulence enhanced momentum. energy transport. The conversation gas dynamic equation together with Maxwells equations are solved. For the arc simulation the straightforward procedure has been used. The temperature, gas density and velocity space distributions within the circuit breaker are simulated in details. The presented results show that the computer simulation of gas flow in SF6 interrupter is a subject of much interest for design and optimization of contacts. The presented results show that the shape and sizes of contacts are chosen by this tool from judiciously compromise between electrical breakdown strength and interruption ability that are functions of gas flow parameters.

  • PDF

Understanding Switching Arcs and Dielectric Capability of a SF6 Self-Blast Interrupter

  • 이원호;김철수;이종철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.196.2-196.2
    • /
    • 2016
  • The design and development procedures of SF6 gas circuit breakers are still largely based on trial and error through testing although the development costs go higher every year. The computation cannot cover the testing satisfactorily because all the real processes arc not taken into account. But the knowledge of the arc behavior and the prediction of thermal plasmas inside SF6 interrupters by numerical simulations are more useful than those by experiments due to the difficulties to obtain physical quantities experimentally and the reduction of computational costs in recent years. In this paper, in order to get further information into the interruption process of a SF6 self-blast interrupter, which is based on the combination of thermal expansion and arc rotation, gas flow simulations with a CFD-arc modeling are performed during the whole switching process such as high-current period, pre-current zero period, and current-zero period. Through the complete work, the temperature of residual arcs as well as the breakdown index after current zero should be a good criterion to predict the dielectric capability of interrupters.

  • PDF

765kV 1회선 선로의 2차아크 모의결과 분석 (Analysis of Simulation Results for Secondary Arc in 765kV single transmission line)

  • 안상필;김철환;박남옥;주형준;심응보
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.36-38
    • /
    • 2004
  • In many countries, including Korea, in order to transmit the more electric power, the higher transmission line voltage is inevitable. So, a rapid reclosing scheme is important for UHV transmission lines to ensure requirements for high reliability of main lines. But, because of the high voltage and long span of UHV lines, the secondary arc current flows across the fault point even after the interruption of the fault current. i.e. A critical aspect of reclosing operation is the extinction of the secondary arc since it must extinguish before successful reclosure can occur. In Korea transmission lines, it is scheduled to energize 765kV single transmission line(79km) between Sin-Ansung S/S and Sin-Gapyeong S/S at June 2006. Therefore this paper analyzes characteristics of the secondary arc extinction on 765kV single transmission line using EMTP. Simulation results shows that the average value of the secondary arc is $30A_{rms}$ and the auto-extinction time of it is longer at closer point to Sin-Gapyeong S/S.

  • PDF

PTFE 노즐로부터 발생하는 용삭가스를 고려한 스위칭 아크 해석 (Numerical Analysis of Switching Arcs with the Ablation of PTFE Nozzles)

  • 이원호;김홍규;이종철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1536-1537
    • /
    • 2011
  • The high-voltage circuit breaker plays an important role in the electrical system because there has been a need for suitable switching devices capable of initiating and interrupting the flow of the electric fault current. It continues as the contacts recede from each other and as the newly created gap is bridged by a plasma. The arc plasma happens inside the insulation nozzle of SF6 self-blast interrupter which is newly developed as the next-generation switching principle. The ablation of PTFE nozzle is caused by this high temperature medium, the PTFE vapor from the nozzle surfaces flows toward the outlets and the pressure chamber. The vapor makes the pressure of the chamber increased by heat and mass transfer from the arcing zone. Because the rate of ablation depends on the magnitude of applied current, it decreases when the current goes to zero. The compressed gas inside the chamber flows reversely toward the arc plasma during this moment. According to this principle, the arc can be cooled down and the fault current can be interrupted successfully. In this study, we calculate arc plasmas and thermal-flow characteristics caused by fault current interruption inside a SF6 self-blast interrupter, and to investigate the effect of PTFE ablation on the whole arcing history.

  • PDF

초고압 GCB 소호부내의 열가스 유동해석 (Analysis of the hot gas flow field in a interrupter of UHV GCB)

  • 송기동;박경엽;이병윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.372-375
    • /
    • 1999
  • This paper presents an arc(hot-gas flow field) analysis method in GCB. This method includes the Lorentz's force due to magnetic field, turbulent viscous effect and radiation heat transfer which are indispensable to the analysis of hot-gas flow. To verify the applicability of the Proposed method, steady state hot-Eas flow analysis within a simplified interrupter has been carried out. Inlet boundary pressure values were assumed to be 9.0atm and 12.0atm. For each inlet boundary condition, three cases of hot-gas flow field analyses were performed according to the values of arc currents which were assumed to be D.C 0.6kA. 1.0kA and 2.0kA. The results revealed that the arc radius at nozzle throat has been concentrated by increasing the pressure of nozzle upstream and that the maximum temperature of arc core has been decreased along to nozzle exit and the high temperature lesion come to be wide in nozzle downstream. From these results, it is confirmed that the proposed method will be applicable to predict the large current interruption capability of GCB.

  • PDF