• Title/Summary/Keyword: Arc Height

Search Result 116, Processing Time 0.028 seconds

A Study on the Building Height Estimation and Accuracy Using Unmanned Aerial Vehicles (무인비행장치기반 건축물 높이 산출 및 정확도에 관한 연구)

  • Lee, Seung-weon;Kim, Min-Seok;Seo, Dong-Min;Baek, Seung-Chan;Hong, Won-Hwa
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.2
    • /
    • pp.79-86
    • /
    • 2020
  • In order to accommodate the increase in urban population due to government-led national planning and economic growth, many buildings such as houses and business building were supplied. Although the building law was revised and managed to manage the supplied buildings, for the sake of economic benefit, there have been buildings that are enlarged or reconstructed without declaring building permits. In order to manage these buildings, on-site surveys were conducted. but it has many personnel consumption. To solve this problem, a method of using a satellite image and a manned aircraft is utilized, but it is diseconomical and a renewal cycle is long. In addition, it is not utilized to the height, and although it is judged by the shading of the building, it has limitations that it must be calculated individually. In this study, height of the building was calculated by using the unmanned aerial vehicle with low personnel consumption, and the accuracy was verified by comparison with the building register and measured value. In this study, spatial information was constructed using a fast unmanned aerial vehicle with low manpower consumption and the building height was calculated based on this. The accuracy by comparing the calculated building height with the building register and the actual measurement.

SEASONAL AND INTER-ANNUAL VARIATION OF SEA SURFACE CURRENT IN THE GULF OF THAILAND

  • Sojisuporn, Pramot;Morimoto, Akihiko;Yanagi, Tetsuo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.352-355
    • /
    • 2006
  • In this study, the seasonal and inter-annual variation of sea surface current in the Gulf of Thailand were revealed through the use of WOD temperature and salinity data and monthly sea surface dynamic heights (SSDH) from TOPEX/Poseidon and ERS-2 altimetry data during 1995-2001. The mean dynamic height and mean geostrohic current were derived from the climatological data while SSDH data gave monthly dynamic heights and their geopstrophic currents. The mean geostrophic current showed strong southward and westward flow of South China Sea water along the gulf entrance. Counterclockwise eddy in the inner gulf and the western side of the gulf entrance associated with upwelling in the area. Seasonal geostrophic currents show basin-wide counterclockwise circulation during the southwest monsoon season and clockwise circulation during the northeast monsoon season. Upwelling was enhanced during the southwest monsoon season. The circulation patterns varied seasonally and inter-annually probably due to the variation in wind regime. And finally we found that congregation, spawning, and migration routes of short-bodied mackerel conform well with coastal upwelling and surface circulation in the gulf.

  • PDF

Selection of Optimal Welding Condition in Root-pass Welding of V-groove Butt Joint (맞대기 V-그루브 이음 초층 용접에서 최적의 용접조건 선정)

  • Yun, Seok-Chul;Kim, Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.95-101
    • /
    • 2009
  • In case of manufacturing the high quality welds or pipeline, the full penetration weld has to be made along the weld joint. Thus the root pass welding is very important and has to be selected carefully. In this study, an experimental method for the selection of optimal welding condition was proposed in the root pass welding which was done along the V-grooved butt weld joint. This method uses the response surface analysis in which the width and height of back bead were chosen as the quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. In the experiments, the target values of the back bead width and the height are 6mm and zero respectively for the V-grooved butt weld joint of 8mm thickness mild steel. The optimal welding conditions could predict the back bead profile(bead width and height) as 6.003mm and -0.003mm. From a series of welding test, it was revealed that a uniform and full penetration weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

A Study on Bead Height Control of GMAW by Short Circuit Time Ratio (단락시간비를 이용한 GMAW의 비드 높이 제어에 관한 연구)

  • 감병오;조상명;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.53-59
    • /
    • 2002
  • This paper shows the experimental results controlling the height of surface and back bead in GMAW by analyzing the unexpected gaps between base metals produced in welding and by controlling welding velocity due to the variation of the gap between base metals in thin-plate welding. The back bead behavior and burn-through in I-type butt joint $CO_2$ welding of thin mild steel are analyzed in the views of short circuit time ratio and short circuit frequency. It is shown through experimental consideration that the short circuit time ratio method is more reasonable than the short circuit frequency method in analyzing the formulation of back bead under changing the gap between base metals. Based on the these results, welding manipulator is designed so as to satisfy the bead height control in real time by measuring the short circuit time ratio. To show the effectiveness of the developed bead formulation control system, the experiment is implemented under two welding conditions such as increasing gap from 0mm to 0.8mm and gradually increasing gap from 0mm to 1.2mm. The experimental results show that the bead formulation can be controlled uniformly in spite of the variation of the gap between base metals.

Experimental study on creep behavior of fly ash concrete filled steel tube circular arches

  • Yan, Wu T.;Han, Bing;Zhang, Jin Q.;Xie, Hui B.;Zhu, Li;Xue, Zhong J.
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.185-192
    • /
    • 2018
  • Fly ash can significantly improve concrete workability and performance, and recycling fly ash in concrete can contribute to a cleaner environment. Since fly ash influences pozzolanic reactions in concrete, mechanical behaviors of concrete containing fly ash differ from traditional concrete. Creep behaviors of fly ash concrete filled steel tube arch were experimentally investigated for 10% and 30% fly ash replacement. The axes of two arches are designed as circular arc with 2.1 m computed span, 0.24 m arch rise, and their cross-sections are all in circular section. Time dependent deflection and strain of loading and mid-span steel tube were measured, and long term deflection of the model arch with 10% fly ash replacement was significantly larger than with 30% replacement. Considering the steel tube strain, compressive zone height, cross section curvature, and internal force borne by the steel tube, the compressive zone height and structural internal forces increased gradually over time due to concrete creep. Increased fly ash content resulted in more significant neutral axis shift. Mechanisms for internal force effects on neutral axis height were analyzed and verified experimentally.

A Study on the Selection of Optimal Neural Network for the Prediction of Top Bead Height (표면 비드높이 예측을 위한 최적의 신경회로망 선정에 관한 연구)

  • Son Joon-Sik;Kim In-Ju;Kim Ill-Soo;Jang Kyeung-Cheun;Lee Dong-Gil
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.66-70
    • /
    • 2005
  • The full automation of welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an neural network model to predict the weld top-bead height as a function of key process parameters in the welding. and to compare the developed model and a simple neural network model using two different training algorithms in order to select an optimal neural network model.

  • PDF

An Analysis for Process Parameters in the Automatic $CO_2$ Welding Using the Taguchi Method (다구찌 방법을 이용한 $CO_2$ 자동용접의 공정변수 분석)

  • 김인주;박창언;김일수;성백섭;손준식;유관종;김학형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.596-599
    • /
    • 2004
  • The robotic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. To achieve this above objective, Taguchi method was employed using five different process parameters (tip gap, gas flow rate, welding speed, arc current, welding voltage) as a guide for optimization of process parameters.

  • PDF

Effect of dilution on micro hardness of Ni-Cr-B-Si alloy hardfaced on austenitic stainless steel plate for sodium-cooled fast reactor applications

  • Balaguru, S.;Murali, Vela;Chellapandi, P.;Gupta, Manoj
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.589-596
    • /
    • 2020
  • Many components in the assembly section of Sodium-cooled Fast Reactor are made of good corrosionresistant 316 LN Stainless Steel material. To avoid self-welding of the components with the coolant sodium at elevated temperature, hardfacing is inevitable. Ni-based colmonoy-5 is used for hardfacing due to its lower dose rate by Plasma Transferred Arc process due to its low dilution. Since Ni-Cr-B-Si alloy becomes very fluidic while depositing, the major height of the weld overlay rests inside the groove. Hardfacing is also done over the plain surface where grooving is not possible. Therefore, grooved and ungrooved hardfaced specimens were prepared at different travel speeds. Fe content at every 100 ㎛ of the weld overlay was studied by Energy Dispersive Spectroscopy and also the micro hardness was determined at those locations. A correlation between iron dilution from the base metal and the micro hardness was established. Therefore, if the Fe content of the weld overlay is known, the hardness at that location can be obtained using the correlation and vice-versa. A new correlation between micro hardness and dilution coefficient is obtained at different locations. A comparative study between those specimens is carried out to recommend the optimum travel speed for lower dilution.

A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm (Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

A Basic Study on the Hat Production for Aged Women

  • Shim, Boo-Ja;Yoo, Hyun
    • Journal of Fashion Business
    • /
    • v.11 no.6
    • /
    • pp.24-34
    • /
    • 2007
  • This study aims to suggest basic data for the production of hats for aged women. The subjects were 151 females who are 60 years old or above and live in Busan. Their hat-wearing reality was inquired and their head parts were measured, which led to the following conclusion: 1. Results of Hat-Wearing Reality Inquiry 64.9% answered they are unsatisfied with the size system of the available hats at present, implying the necessity for improving the current dimension system. 92.7% responded hat dimensions need to be subdivided, while 97.4% were for the necessity of hat size system. 74.8% expressed their will to buy ordered hats because they can find the hats of right sizes and designs. 2. Results of Head-Part Measurement Experiments According to head-part measurement, head circumference A was 53.26cm, head circumference B 54.19cm, and head circumference C 57.69cm on the average. Cluster analysis revealed three types. Type 1 (24%) with small head length and circumference is the smallest head with a wide upper part. Type 2 (33%) has long head height, short bitragion arc A, and thick head breadth. Type 3 (43%), owing to big head circumference and length as well as high values in vertical items. Considering head circumference B (HCB) and bitragion arc A (BAA), a new hat size system of 3 sizes (HCB: BAA) was chosen: S (52cm: 29cm), M (53-55cm: 30cm), and L (56-57cm: 31cm).