• Title/Summary/Keyword: Arbuscular mycorrhizal fungi (AMF)

Search Result 66, Processing Time 0.02 seconds

Growth Characteristics of Rhizophagus clarus Strains and Their Effects on the Growth of Host Plants

  • Lee, Eun-Hwa;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.43 no.4
    • /
    • pp.444-449
    • /
    • 2015
  • Arbuscular mycorrhizal fungi (AMF) are ubiquitous in the rhizosphere and form symbiotic relationships with most terrestrial plant roots. In this study, four strains of Rhizophagus clarus were cultured and variations in their growth characteristics owing to functional diversity and resultant effects on host plant were investigated. Growth characteristics of the studied R. clarus strains varied significantly, suggesting that AMF retain high genetic variability at the intraspecies level despite asexual lineage. Furthermore, host plant growth response to the R. clarus strains showed that genetic variability in AMF could cause significant differences in the growth of the host plant, which prefers particular genetic types of fungal strains. These results suggest that the intraspecific genetic diversity of AMF could be result of similar selective pressure and may be expressed at a functional level.

Effects of Arbuscular Mycorrhizal Fungal Inoculation on the Growth of Red Pepper and Soil Glomalin Content

  • Lee, Ji-Eun;Lee, Eun-Hwa;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.517-524
    • /
    • 2021
  • Red pepper seedlings were inoculated either alone or with a mixture of all five species of arbuscular mycorrhizal fungi (AMF). After 10 weeks of growth in the greenhouse, the seedlings were transplanted into fields and cultivated without chemical fertilizers and pesticides for 10 weeks. The results showed that plant growth was significantly increased under both greenhouse and field conditions, suggesting that AMF inoculation has a positive effect on the growth of Capsicum annuum and improves the physical properties of the soil by increasing the concentration of glomalin. The application of AMF can positively contribute to sustainable agriculture by reducing the use of chemical fertilizers while increasing crop growth.

Diversity of Arbuscular Mycorrhizal Fungi Associated with a Sb Accumulator Plant, Ramie (Boehmeria nivea), in an Active Sb Mining

  • Wei, Yuan;Chen, ZhiPeng;Wu, FengChang;Li, JiNing;ShangGuan, YuXian;Li, FaSheng;Zeng, Qing Ru;Hou, Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1205-1215
    • /
    • 2015
  • Arbuscular mycorrhizal fungi (AMF) have great potential for assisting heavy metal hyperaccumulators in the remediation of contaminated soils. However, little information is available about the symbiosis of AMF associated with an antimony (Sb) accumulator plant under natural conditions. Therefore, the objective of this study was to investigate the colonization and molecular diversity of AMF associated with the Sb accumulator ramie (Boehmeria nivea) growing in Sb-contaminated soils. Four Sb mine spoils and one adjacent reference area were selected from Xikuangshan in southern China. PCR-DGGE was used to analyze the AMF community composition in ramie roots. Morphological identification was also used to analyze the species in the rhizosphere soil of ramie. Results obtained showed that mycorrhizal symbiosis was established successfully even in the most heavily polluted sites. From the unpolluted site Ref to the highest polluted site T4, the spore numbers and AMF diversity increased at first and then decreased. Colonization increased consistently with the increasing Sb concentrations in the soil. A total of 14 species were identified by morphological analysis. From the total number of species, 4 (29%) belonged to Glomus, 2 (14%) belonged to Acaulospora, 2 (14%) belonged to Funneliformis, 1 (7%) belonged to Claroideoglomus, 1 (7%) belonged to Gigaspora, 1 (7%) belonged to Paraglomus, 1 (7%) belonging to Rhizophagus, 1 (7%) belonging to Sclervocystis, and 1 (7%) belonged to Scutellospora. Some AMF sequences were present even in the most polluted site. Morphological identification and phylogenetic analysis both revealed that most species were affiliated with Glomus, suggesting that Glomus was the dominant genus in this AMF community. This study demonstrated that ramie associated with AMF may have great potential for remediation of Sb-contaminated soils.

Diversity of Arbuscular Mycorrhizal Fungi in Rhizospheres of Camellia japonica and Neighboring Plants Inhabiting Wando of Korea (전남 완도에 서식하는 동백나무와 그 주변 식물의 근권에 분포하는 수지상균근균의 다양성)

  • Lee, Eun-Hwa;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.42 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • In this study, the community structures of arbuscular mycorrhizal fungi (AMF) in rhizospheres of Camellia japonica and neighboring woody plants in Wando, Korea were investigated. Rhizospheres of C. japonica and other woody plants were dominated by the same species, Acaulospora mellea, but Shannon's index, species richness and total spore numbers of the AMF communities were higher in non-C. japonica than in neighboring plants. Regardless of host plant species, the frequency of A. mellea was significantly high comparing with other AMF species. The community similarity of AMF within C. japonica was significantly higher than between C. japonica and neighboring plants or neighboring plants (p<0.005). Results showed that AM fungal communities in rhizospheres of C. japonica have unique community structure and are different from that of neighboring host plants, suggesting that community structure of AMF could be influenced by host plant species.

Responses of Guava Plants to Inoculation with Arbuscular Mycorrhizal Fungi in Soil Infested with Meloidogyne enterolobii

  • Campos, Maryluce Albuquerque Da Silva;Silva, Fabio Sergio Barbosa Da;Yano-Melo, Adriana Mayumi;Melo, Natoniel Franklin De;Pedrosa, Elvira Maria Regis;Maia, Leonor Costa
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.242-248
    • /
    • 2013
  • In the Northeast of Brazil, expansion of guava crops has been impaired by Meloidogyne enterolobii that causes root galls, leaf fall and plant death. Considering the fact that arbuscular mycorrhizal Fungi (AMF) improve plant growth giving protection against damages by plant pathogens, this work was carried out to select AMF efficient to increase production of guava seedlings and their tolerance to M. enterolobii. Seedlings of guava were inoculated with 200 spores of Gigaspora albida, Glomus etunicatum or Acaulospora longula and 55 days later with 4,000 eggs of M. enterolobii. The interactions between the AMF and M. enterolobii were assessed by measuring leaf number, aerial dry biomass, $CO_2$ evolution and arbuscular and total mycorrhizal colonization. In general, plant growth was improved by the treatments with A. longula or with G. albida. The presence of the nematode decreased arbuscular colonization and increased general enzymatic activity. Higher dehydrogenase activity occurred with the A. longula treatment and $CO_2$ evolution was higher in the control with the nematode. More spores and higher production of glomalin-related soil proteins were observed in the treatment with G. albida. The numbers of galls, egg masses and eggs were reduced in the presence of A. longula. Inoculation with this fungus benefitted plant growth and decreased nematode reproduction.

Intraspecific Functional Variation of Arbuscular Mycorrhizal Fungi Originated from Single Population on Plant Growth

  • Lee, Eun-Hwa;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.48-48
    • /
    • 2014
  • Arbuscular Mycorrhizal Fungi(AMF) is widespread symbiont forming mutualistic relationship with plant root in terrestrial forest in ecosystem. They provide improved absorption of nutrient and water, and enhance the resistance against plant pathogen or polluted soil, therefore AM fungi are important for survival and maintaining of individual or community of plant. For last decade, many studies about the functional variation of AM fungi on host plant growth response were showed that different geographic isolates, even same species, have different effect on host plant. However, little was known about functional variation of AM fungal isolates originated single population, which provide important insight about intraspecific diversity of AMF and their role in forest ecosystem. In this study, four AM fungal isolates of Rhizophagus clarus were cultured in vitro using transformed carrot (Daucus carota) root and they showed the difference between isolates in ontogenic characteristics such as spore density and hyphal length. The plant growth response by mycorrhizas were measured also. After 20 weeks from inoculation of these isolates to host plants, dry weight, Root:Shoot ratio, colonization rates and N, P concentration of host plant showed host plant was affected differently by AM fungal isolates. This results suggest that AM fungi have high diversity in their functionality in intraspecific level, even in same population.

  • PDF

Morphology of Arbuscular Mycorrhizal Roots and Effects of Root Age and Soil Texture on the Mycorrhizal Infection in Panax ginseng C.A. Meyer

  • Lee, Kyung-Joon;Park, Hoon;Lee, In-Sik
    • Journal of Ginseng Research
    • /
    • v.28 no.3
    • /
    • pp.149-156
    • /
    • 2004
  • The objectives of this study were to investigate the morphology of mycorrhizal roots, and the effects of root age and soil texture on the mycorrhizal infection in ginseng (Panax ginseng C. A. Meyer) growing in Korea. Ginseng roots at ages of two to six years were collected from fields in late June. Their infection by arbuscular mycorrhizal fungi(AMF) was studied by clearing the roots and staining fungal hyphae with trypan blue. Root infection varied greatly depending on the developmental stages of young roots. Young tertiary roots, in diameter of smaller than 0.8 mrn, formed during the current growing season had root hairs and were frequently and in some cases heavily infected by AMF. Hyphal coils and arbuscules were abundant, while vesicles were rarely observed. Older secondary or tertiary roots in diameter of bigger than 1.0 mm with fully differentiated primary xylem formed during the previous growing season had no root hairs, and were not infected at all. The rates of mycorrhizal infection in the young tertiary roots were not affected by the age of the ginseng plants, suggesting that fungal populations might have not much changed during the aging of the cultivated fields up to six years. The differences in the infection rates among the different ages of ginseng were caused by differences in the amount of young tertiary roots in the samples. Soil texture, either sandy loam or clay loam, did not affect the rate of root infection. There were large variations in the infection rates among the different farms and locations within a farm. It strongly suggested that infection rates of the ginseng roots by AMF would be influenced by the practice of the farmers, possibly by avoiding consecutive planting, introduction of new topsoil, and the ways of handling the soil before transplanting the ginseng, such as fumigation or sterilization that might have affected indigenous inoculum sources of the AMF.

Seasonal Dynamics of Arbuscular Mycorrhizal Fungi (AMF) in Forest Trees of Chittagong University Campus in Bangladesh

  • Nandi, Rajasree;Mridha, M.A.U.;Bhuiyan, Md. Kalimuddin
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.3
    • /
    • pp.277-284
    • /
    • 2014
  • Status of Arbuscular Mycorrhizal (AM) colonization in seven tree species (Albizia saman, Acacia auriculiformis A. Cunn. ex Benth., Albizia lebbeck, Chickrassia tabularis A. Juss., Eucalyptus camaldulensis Dehnn., Gmelina arborea (Roxb) DC, Swietenia macrophylla King.) collected from the hilly areas of Chittagong University (CU) was investigated. Roots and rhizosphere soil samples were collected in different seasons (pre-monsoon, monsoon and post monsoon). Percentage of AM colonization in root and number of spores/100 gm dry soil were assessed. The result of the investigation reveals that the intensity and percentage of AM colonization varied in different forest tree species in different seasons. In this study, maximum AM colonization and spore population were found in pre-monsoon and minimum were in monsoon season. The intensity of colonization was maximum in C. tabularis (74.43%) in pre-monsoon, A. lebbeck (69.45%) in monsoon and S. macrophylla (67.8%) in post monsoon seasons and minimum in A. auriculiformis (53.75%) during pre-monsoon, A. saman (24.4%) in monsoon and A. saman (19.36%) in post monsoon. The number of spores found per 100 g dry soil ranged between 164-376 during pre-monsoon, 27-310 during monsoon and 194-299 in post monsoon season. Out of six recognized genera of AM fungi, Glomus, Sclerocystis, Entrophospora, Scutellospora, Acaulospora and other unidentified spores were observed.

Diversity of Arbuscular Mycorrhizal Fungi in Paekryung and Daecheong Islands

  • Choi, Kyung-Dal;Ka, Kang-Hyeon;Lee, Youn-Su;Shim, Jae-Ouk;Lee, Sang-Sun;Lee, Tae-Soo;Lee, Min-Woong
    • Mycobiology
    • /
    • v.28 no.3
    • /
    • pp.133-141
    • /
    • 2000
  • Twenty species representing five genera of arbuscular mycorrhizal fungi were isolated from twenty-four soil samples of the rhizosphere of the family Gramineae in Paekryung and Daecheong islands. A few species such as Glomus invermaius, G. marcrocapus var. marcrocarpus and Scutellospora coralloidea were recorded for the first time in Korea. The number of spores per 10g of soil was in the range of $8{\sim}337$ in Paekryung and $16{\sim}349$ in Daecheong island, respectively. The number of species per 10g of soil was $2{\sim}8$ species in Paekryung and $2{\sim}7$ species in Daecheong, respectively. Among them, G. macrocarpus var. macrocarpus was the most abundant species in both islands. The species diversity and evenness were almost similar in Paekryung and Daecheong Islands. Based on the host plants in two islands, the species diversity showed the highest value of 1.63 in Ischaemum crassipes, whereas the eveuness of species showed the lowest value of 0.35 in Eragrostis ferraginea.

  • PDF

Spore Diversity of Arbuscular Mycorrhizal Fungi in a Post-mining Area in Korea (폐광산 지역의 근권 토양에 분포하는 수지상균근균 포자의 다양성)

  • Park, Hyeok;Lee, Eun-Hwa;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.44 no.2
    • /
    • pp.82-86
    • /
    • 2016
  • In this study, we investigated the spore diversity of arbuscular mycorrhizal fungi (AMF) in rhizospheres of a post-mining area and a natural forest area in Jecheon, Korea. The rhizospheres of the post-mining areas were dominated by Acaulospora mellea, while those of the natural forest area were dominated by Ambispora leptoticha. The number of AMF spores in rhizospheres of the post-mining area was significantly higher than that in the rhizospheres of the natural forest area. Although the diversity index of each area showed no significant difference, the community similarity of AMF within the rhizospheres of natural forest area was significantly higher than that observed within those of post-mining area. These results showed that AM fungal communities in rhizospheres could change because of the degree of disturbance.