Browse > Article
http://dx.doi.org/10.4014/jmb.1411.11033

Diversity of Arbuscular Mycorrhizal Fungi Associated with a Sb Accumulator Plant, Ramie (Boehmeria nivea), in an Active Sb Mining  

Wei, Yuan (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science)
Chen, ZhiPeng (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science)
Wu, FengChang (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science)
Li, JiNing (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science)
ShangGuan, YuXian (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science)
Li, FaSheng (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science)
Zeng, Qing Ru (College of Resources and Environment, Hunan Agricultural University)
Hou, Hong (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.8, 2015 , pp. 1205-1215 More about this Journal
Abstract
Arbuscular mycorrhizal fungi (AMF) have great potential for assisting heavy metal hyperaccumulators in the remediation of contaminated soils. However, little information is available about the symbiosis of AMF associated with an antimony (Sb) accumulator plant under natural conditions. Therefore, the objective of this study was to investigate the colonization and molecular diversity of AMF associated with the Sb accumulator ramie (Boehmeria nivea) growing in Sb-contaminated soils. Four Sb mine spoils and one adjacent reference area were selected from Xikuangshan in southern China. PCR-DGGE was used to analyze the AMF community composition in ramie roots. Morphological identification was also used to analyze the species in the rhizosphere soil of ramie. Results obtained showed that mycorrhizal symbiosis was established successfully even in the most heavily polluted sites. From the unpolluted site Ref to the highest polluted site T4, the spore numbers and AMF diversity increased at first and then decreased. Colonization increased consistently with the increasing Sb concentrations in the soil. A total of 14 species were identified by morphological analysis. From the total number of species, 4 (29%) belonged to Glomus, 2 (14%) belonged to Acaulospora, 2 (14%) belonged to Funneliformis, 1 (7%) belonged to Claroideoglomus, 1 (7%) belonged to Gigaspora, 1 (7%) belonged to Paraglomus, 1 (7%) belonging to Rhizophagus, 1 (7%) belonging to Sclervocystis, and 1 (7%) belonged to Scutellospora. Some AMF sequences were present even in the most polluted site. Morphological identification and phylogenetic analysis both revealed that most species were affiliated with Glomus, suggesting that Glomus was the dominant genus in this AMF community. This study demonstrated that ramie associated with AMF may have great potential for remediation of Sb-contaminated soils.
Keywords
Antimony; soil pollution; arbuscular mycorrhizal fungi; phytoremediation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yang B, Zhou M, Shu WS, Lan CY, Ye ZH, Qiu RL, et al. 2010. Constitutional tolerance to heavy metals of a fiber crop, ramie (Boehmeria nivea), and its potential usage. Environ. Pollut. 158: 551-558.   DOI
2 Yang RY, Zan ST, Tang JJ, Chen X, Zhang Q. 2010. Variation in community structure of arbuscular mycorrhizal fungi associated with a Cu tolerant plant - Elsholtzia splendens. Appl. Soil Ecol. 44: 191-197.   DOI
3 Zarei M, König S, Hempel S, Nekouei MK, Savaghebi G, Buscot F. 2008. Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environ. Pollut. 156: 1277-1283.   DOI
4 Zarei M, Saleh-Rastin N, Jouzani GS, Savaghebi G, Buscot F. 2008. Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. Eur. J. Soil Biol. 44: 381-391.   DOI
5 Wang X, Liu YO, Zeng GM, Chai LY, Song XC, Min ZY, Xiao X. 2008. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ. Exp. Bot. 62: 389-395.   DOI
6 Vogel-Mikuš K, Drobne D, Regvar M. 2005. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ. Pollut. 133: 233-242.   DOI
7 Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M. 2006. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ. Pollut. 139: 362-371.   DOI
8 Wang FY, Lin XG, Yin R, Wu LH. 2006. Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions. Appl. Soil Ecol. 31: 110-119.   DOI
9 Wilson SC, Lockwood PV, Ashley PM, Tighe M. 2010. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ. Pollut. 158: 1169-1181.   DOI
10 Wu FY, Ye ZH, Wong MH. 2009. Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere 76: 1258-1264.   DOI
11 Solís DFA, Valentín VA, Chorover J. 2011. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci. Total Environ. 409: 1009-1016.   DOI
12 Wu FY, Ye ZH, Wu SC, Wong MH. 2007. Metal accumulation and arbuscular mycorrhizal status in metallicolous and non metallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 226: 1363-1378.   DOI
13 Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI
14 Simon L, Lalonde M, Bruns TD. 1992. Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 58: 291-295.
15 Sonjak S, Beguiristain T, Leyval C, Regvar M. 2009. Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments. Plant Soil 314: 25-34.   DOI
16 Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G. 2006. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65: 74-81.   DOI
17 Tschan M, Robinson BH, Schulin R. 2009. Antimony in the soil–plant system – a review. Environ. Chem. 6: 106-115.   DOI
18 United States Environmental Protection Agency. 1979. Toxics release inventory. Doc. 745-R-00-007. USEPA, Washington, DC, USA.
19 Ricken B, Hofner W. 1996. Effects of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago sativa L.) and oat (Avena sativa L.) on a sewage-sludge treated soil. Z. Pflanz. Bodenk. 159: 189-194.   DOI
20 Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P. 2006. Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environ. Microbiol. 8: 971-983.   DOI
21 Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23: 515-531.   DOI
22 Regvar M, Vogel K, Irgel N, Wraber T, Hildebrandt U, Wilde P, Bothe H. 2003. Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J. Plant Physiol. 160: 615-626.   DOI
23 Reeves RD, Baker AJM. 2000. Metal-accumulating plants, pp. 193-229. In Raskin I (ed.). Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. John Wiley & Sons Inc.
24 Schüßler A, Walker C. 2010. The Glomeromycota: a species list with new families and new genera. Available at: http://ww.lrz.de/-schuessler/amphylo/.
25 Schwarzott D, Schüßler A. 2001. A simple and reliable method for SSU rRNA gene DNA extraction, amplification and cloning from single AM fungal spores. Mycorrhiza 10: 203-207.   DOI
26 Schwarzott D, Walker C, Schüßle A. 2001. Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol. Phylogenet. Evol. 21: 190-197.   DOI
27 Niu ZC, Tang M, Huang JC, Wang S, Sheng M. 2007. Effects of lead and zinc in the soil on the distribution of arbuscular mycorrhizal fungi. Acta Bot. Boreali Occidentalia Sin. 27: 1233-1238.
28 She W, Jie YC, Xing HC, Lu YW, Huang M, Kang WL, Wang D. 2011. Tolerance to cadmium in ramie (Boehmeria nivea) genotypes and its evaluation indicators. Acta Sci. Agro. 37: 348-354.
29 Pan XL, Zhang DY, Chen X, Bao AM, Li LH. 2011. Antimony accumulation, growth performance, antioxidant defense system and photosynthesis of Zea mays in response to antimony pollution in soil. Water Air Soil Pollut. 215: 517-523.   DOI
30 Muyzer G, De-Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
31 Okkenhaug G, Zhu YG, Luo L, Lei M, Li X, Mulder J. 2011. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environ. Pollut. 159: 2427-2434.   DOI
32 Peng JF, Song YH, Yuan P, Cui XY, Qiu GL. 2009. The remediation of heavy metals contaminated sediment. J. Hazard. Mater. 161: 633-640.   DOI
33 Perrier N, Amir H, Colin F. 2006. Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza 16: 449-458.   DOI
34 Pongrac P, Vogel-Mikuš K, Kump P, Nečemer M, Tolrà R, Poschenrieder C, et al. 2007. Changes in elemental uptake and arbuscular mycorrhizal colonization during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69: 1602-1609.   DOI
35 Leyval C, Turnau K, Haselwandter K. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7: 139-153.   DOI
36 Punaminiya P, Datta R, Sarkar D, Barber S, Patel M, Das P. 2010. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass Chrysopogon zizanioides (L.). J. Hazard. Mater. 177: 465-474.   DOI
37 Liu Y, Zhu YG, Chen BD, Christie P, Li XL. 2005. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza 15: 187-192.   DOI
38 Leung HM, Ye ZH, Wong MH. 2007. Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66: 905-915.   DOI
39 Liu FH, Li ZJ, Liu QY, He H, Liang XN, Lai ZJ. 2003. Introduction to the wild resources of the genus Boehmeria Jacq. in China. Genet. Resour. Crop Evol. 50: 793-797.   DOI
40 Lu RK. 2000. Method of soil chemistry analysis, pp. 146-149. Chinese Agricultural Science and Technology Publishing House, Beijing.
41 Luo HF, Qi HY, Zhang HX. 2004. Assessment of the bacterial diversity in fenvalerate-treated soil. World J. Microbiol. Biotechnol. 20: 509-515.   DOI
42 McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. 1990. A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 115: 495-501.   DOI
43 MEMSC. 1990. The background values of soil elements in China. Meterological Press, Beijing.
44 Hammel W, Debus R, Steubing L. 2000. Mobility of antimony in soil and its availability to plants. Chemosphere 41: 1791-1798.   DOI
45 Miransari M. 2011. Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl. Microbiol. Biotechnol. 89: 917-930.   DOI
46 Miransari M, Bahrami HA, Rejali F, Malakouti MJ. 2008. Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol. Biochem. 40: 1197-1206.   DOI
47 He MC, Wang XQ, Wu FC, Fu ZY. 2012. Antimony pollution in China. Sci. Total Environ. 421-422: 41-50.   DOI
48 Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW. 1998. Ploughing up the wood-wide web? Nature 394: 431.   DOI
49 He MC. 2007. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. Environ. Geochem. Health 29: 209-219.   DOI
50 Hildebrandt U, Kaldorf M, Bothe H. 1999. The zinc violet and its colonization by arbuscular mycorrhizal fungi. J. Plant Physiol. 154: 709-717.   DOI
51 Index Mundi. Antimony: world mine production, by country. Available at http://www.indexmundi.com/en/commodities/minerals/antimony/antimony_table09.html 2009.
52 Kabata A, Pendias H. 2001. Trace Elements in Soils and Plants. CRC Press, Boca Raton, FL, USA.
53 Khan A. 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elements Med. Biol. 18: 355-364.   DOI
54 Dong Y, Zhu YG, Smith FA, Wang YS, Chen BD. 2008. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environ. Pollut. 155: 174-181.   DOI
55 Ku WZ, Zhao YL, Lei CX, Dong M, Dai MB, Yi HC. 2012. Heavy metal pollution in soils and characteristics of heavy metal accumulation of dominant plants in antimony mine area. Chin. J. Environ. Eng. 10: 3774-3780.
56 Leung HM, Ye ZH, Wong MH. 2006. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ. Pollut. 139: 1-8.   DOI
57 Filella M, Belzile N, Chen Y-W. 2002. Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth Sci. Rev. 57: 125-176.   DOI
58 Feng RW, Wei CY, Tu SX, Ding YZ, Wang RG, Guo JK. 2013. The uptake and detoxification of antimony by plants: a review. Environ. Exp. Bot. 96: 28-34.   DOI
59 Feng RW, Wei CY, Tu SX, Wu FC, Yang LS. 2009. Antimony accumulation and antioxidative responses in four fern plants. Plant Soil 317: 93-101.   DOI
60 Flynn HC, Meharg AA, Bowyer PK, Paton GI. 2003. Antimony bioavailability in mine soils. Environ. Pollut. 124: 93-100.   DOI
61 Fusconi A, Berta G. 2012. Environmental stress and role of arbuscular mycorrhizal symbiosis, pp. 197-214. In Ahmad P, Prasad MNV (eds.). Abiotic stress responses in plants. Metabolism, Productivity and Sustainability. Springer, New York.
62 Göhre V, Paszkowski U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223: 1115-1122.   DOI
63 Baker AJM, Ernst WHO, Ent AV, Malaisse F, Ginocchio AR. 2010. Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America, pp. 7-40. In Batty LC, Hallberg KB (eds.). Ecology of Industrial Pollution. Cambridge University Press, Cambridge.
64 Gaur A, Adholeya A. 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr. Sci. 86: 528-534.
65 Gebel T. 1997. Arsenic and antimony: comparative approach on mechanistic toxicology. Chem. Biol. Interact. 107: 131-144.   DOI
66 Gerdemann JW, Nicolson TH. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46: 235-244.   DOI
67 Alford ÉR, Pilon-Smits EAH, Paschke MW. 2010. Metallophytes - a view from the rhizosphere. Plant Soil 337: 33-50.   DOI
68 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.   DOI
69 Amir H, Perrier N, Rigault F, Jaffré T. 2007. Relationships between Ni-hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic soils. Plant Soil 293: 23-35.   DOI
70 Barea JM, Jeffries P. 1995. In Hock B, Varma A (eds.). Mycorrhiza Structure, Function, Molecular Biology and Biotechnology, pp. 521-559. Springer-Verlag, Heidelberg, Germany.
71 Boyd RS. 2007. The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293: 153-176.   DOI
72 Al Agely A, Sylvia DM, Ma LQ. 2005. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). J. Environ. Qual. 34: 2181-2186.   DOI
73 Brundrett MC. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytol. 154: 275-304.   DOI
74 Cornejo P, Azcon-Aguilar C, Jarea JM, Ferrol N. 2004. Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiol. Lett. 241: 265-270.   DOI
75 Daniell TJ, Husband R, Fitter AH, Young JPW. 2001. Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiol. Ecol. 36: 203-209.   DOI