• Title/Summary/Keyword: Aramid

Search Result 262, Processing Time 0.025 seconds

Improving the photo-stability of ${\rho}$-aramid fiber by $TiO_2$ nanoparticle ($TiO_2$ sol-gel 합성에 의한 아라미드 섬유의 내광성 증진)

  • Sim, J.H.;Park, S.M.;Kim, M.S.;Kwon, I.J.;Kwon, S.Y.;Lee, S.G.
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.109-109
    • /
    • 2012
  • 아라미드 섬유는 태양광의 직사광선에 계속 노출될 경우 120주 경과 후에는 강도가 3분의 1로 떨어지는 단점이 있다. 이와 같은 단점을 보완하기 위해 나노 크기의 금속산화물인 $TiO_2$ 졸-겔 나노합성법을 이용하여 나노졸을 제조하고 이를 직물에 함침하는 공정을 통하여 아라미드 섬유의 내광성 증진에 대해 연구하였다. TTIP, TEOS 등의 금속전구체를 이용하여 구형의 나노졸 합성에 의한 $TiO_2$ 나노졸을 수분산형태의 졸로서 섬유가공 공정상에 접목하였다. 제조된 나노크기의 $TiO_2$ 입자분포와 크기, 미세구조 및 결정상을 알아보기 위해 입도분포분석기, TEM, XRD를 이용하였다. $TiO_2$ 나노졸을 함침한 아라미드 직물은 내광성은 24, 48, 96시간 동안 Xenon-arc 광조사한 후, 물성변화를 분석하였다. 나노졸 합성시 반응물의 농도 및 용액의 pH 조건에 따른 나노졸의 미세구조를 TEM을 이용하여 관찰한 결과, 반응물의 농도에 따라 평균입도는 313.7nm, 500.5nm, 840.3nm, 1002nm로 커졌다. 하지만, 반응물의 농도가 증가할수록 시간이 지남에 따라 입자들이 층 분리 현상이 관찰되었으며, 단분산된 나노졸 입자를 제조하기 위해서는 TTIP의 투입량을 0.67mole(200ml)로 유지하였다. 또한 이를 아라미드 직물에 함침하여 광조사 시간에 따른 아라미드 섬유의 물리적 특성의 변화를 분석하였다.

  • PDF

A study on the functional coatings using silicone resin of Architectural membrane structures products (건축용 막구조 제품의 실리콘 기능성 코팅에 관한 연구)

  • Choi, Yun-Sung;Lee, Jang-Hun;Yoon, Nam-Sik;Kim, Su-Hong;Yoo, Gu-Geun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.106-106
    • /
    • 2012
  • 막구조(Membrane structure)란 건축분야에서 "fabric structure" 또는 tension structure"와 같이 사용되는 용어로 코팅된 직물(coated fabrics)을 주재료로 사용하는 구조를 말한다. 특히 구조체로서 연성의 막을 이용 이것에 초기 장력을 주어 강성을 늘림으로서 외부하중에 대하여 안정된 형태를 유지하는 장점을 갖고 있다. 초기 창안된 독일의 온화한 기후에 적용되는 반면 한국이나 일본에는 60m/sec를 넘나드는 태풍의 피해와 많은 적설량을 보이는 기후적 제약으로 발달되지 못하였다. 그러나 최근 새로운 소재의 막구조 제품 개발과 구조해석 방법 및 시공기술 등이 개발되어 보편화되어지고 있는 실정이다. 막구조용 재료로 사용되는 섬유소재는 주로 Polyester직물을 기재로 한 PVC 코팅 제품으로 일반 PVC 막재는 장력이 약하고, 광선에 의한 물성이 쉽게 변화되어 내구연한이 5~15년에 불과하다. 유리섬유나 아라미드섬유 등으로 제직한 기재에 고내열 실리콘이나 PTFE 수지를 코팅한 제품은 약품에 대한 내구성이 높고 자외선에 대해서는 매우 큰 저항성을 가지기 때문에 내구연한이 10년에서 30년 까지도 향상된다. 그러나 실리콘 코팅막은 세계적으로 가장 좋은 막재로 알려졌으나 자정능력(Self Cleaning)에 문제가 발생되어 사용량이 감소 추세라고 할 수 있다. 일반적인 코팅 가공의 경우 MEK, Toluene, DMF 등과 같은 유기용제를 다량 사용함에 따라 작업환경 및 대기오염, 화재 위험 등의 문제점이 있으며 특히 가공시 잔류되는 유기용제의 심각성이 대두되고 있는 상황이다. 이와 같이 코팅 가공제 자체를 친환경적인 물질로 대체하여 각종 환경규제에 대응하고 유해 폐기물의 발생을 줄일 수 있는 코팅 가공제 및 가공기술 개발이 절실하다. 이에 본 연구에서는 Glass-Fiber, Aramid 등의 슈퍼 섬유와 고 강력 섬유 등을 이용하여 PTFE 코팅제품과 비슷한 수준의 성능을 부여하는 무용제형 실리콘 코팅 수지를 개발하고 내구성능 향상, Self Cleaning성, 난연성, 자외선 차단, 인장강도 및 인열 강도의 향상 등 다양한 기능성을 부여하는 최적의 환경 친화적 코팅 공정 기술을 개발하여 차세대 건축용 막구조 제품을 개발하고자 한다.

  • PDF

Applicability of Hyblid FRP Reinforcing Bar for Self-diagnosis of Concrete Fracture (콘크리트 파괴 자가진단을 위한 하이브리드 FRP 보강근의 적용 특성)

  • Park, Seok-Kyun;Kim, Dae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.439-445
    • /
    • 2006
  • For investigating self-diagnosis applicability, a method based on monitoring the changes in the electrical resistance of hybrid FRP(having electrical property) reinforced concrete has been tested. Then after examining change in the value of electrical resistance of carbon fiber in CFRP(non-hybrid type), CFGFRP and CFAFRP(hybrid type) before and after the occurrence of cracks and fracture in non-hybrid and hybrid FRP reinforced concrete at each flexural weight-stage, the correlations of each factors(the changes in electrical resistance and load as a function of strain, deflection) were analyzed. As the results, it is clarified that when the carbon fiber tows fracture, the electrical resistance of it increase largely, and afterwards hybrid FRP composites can be resist the load due to the presence of the reinforced fiber, for example, glass fiber or aramid fiber tows. Therefore, it can be recognized that hybrid FRP(including carbon fiber) reinforcing bar could be applied for self-diagnosis of fracture in reinforced FRP concrete fracture.

Empirical Prediction for the Compressive Strength and Strain of Concrete Confined with FRP Wrap (FRP로 보강된 콘크리트의 강도 및 변형률 예측)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.253-263
    • /
    • 2007
  • Previous researches showed that confined concrete with Fiber-Reinforced Plastic (FRP) sheets significantly improves the strength and ductility of concrete compared with unconfined concrete. However, the retrofit design of concrete with FRP materials requires an accurate estimate of the performance enhancement due to the confinement mechanism. The object of this research is to predict the compressive strength and strain of concrete confined with FRP wraps. For the purpose of this research, 102 test specimens were fabricated and loaded statically under uniaxial compression. Axial load, axial and lateral strains were investigated to predict the ultimate stress and strain. Also, to achieve reliability of proposed strength and strain models for FRP-confined concrete, another series of uniaxial compression test results were used. This paper presents strength and strain models for FRP-confined concrete. The proposed models to estimate the ultimate stresses and failure strains produce satisfactory predictions as compared to current design equations. In conclusion, it is proposed that the modified stress-strain model of concrete cylinders could be effectively used for the repair and retrofit of concrete columns.

Study on the Development of SCBA Belt for Firefighters (소방용 등지게 벨트의 제품개발에 관한 연구)

  • Kang, Minyoung;An, Seungkook;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.3
    • /
    • pp.537-547
    • /
    • 2017
  • This study evaluates the wearing performance of a self-contained breathing apparatus (SCBA) belt for firefighters in Korea. A SCBA belt design was suggested based on the wearing evaluation of a SCBA belt; subsequently, prototypes I and II were created. A wearing evaluation of prototypes with improved design and design preference was performed. Six designs elements of the SCBA belt for firefighters were suggested based on the survey results of wearing the SCBA belt and for the SCBA belt design preference for use by firefighters. First, belt material should be made of black high-strength aramid textiles. In addition, Velcro should be used to attach and detach retroreflective and fluorescent materials along with various colors for visibility. Second, the chest belt should be made of the same material used for other parts; in addition, the chest belt should be moved to the center for center of gravity and a cobra buckle should be applied. Third, an O-ring should be applied to the back and the belt connected to the O-ring should distribute the weight in six axes. Fourth, a detachable air respirator should be able to separate by using upper and lower cobra buckles. Fifth, a separable leg belt and a detachable pocket are also suggested. Sixth, a ring for walkie-talkies, alarms and equipment as a fabric ring are also suggested. Prototype III with an improved design was created based on the results of the design suggestion.

Impact Properties of Organic Fiber Reinforced Thermoplastic Composites (유기섬유강화 열가소성고분자 복합재료의 충격특성)

  • Im, Seung-Soon;Lee, Seung-Bae;Lee, Yong-Moo;Choi, Hyeong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.424-432
    • /
    • 1996
  • The fiber reinforced thermoplastic composites(FRTP) were prepared with polypropylene fiber(PPF) as matrix and vinylon(VF), Aramid(KF) or nylon fiber(PAF) as reinforcing materials using the integrated fiber mixing apparatus. The composite sheets were prepared by compression molding and their impact and morphological properties were characterized. VF/PP system showed the maximum value in Izod impact strength, while KF/PP system showed the maximum value in high rate impact properties. Ductility Index(DI) order was VF/PP>KF/PP>PAF/PP. A maximum DI for VF/PP, 2.43, was obtained when the weight fraction of VF was 20%. The optimum amount of the reinforcing organic fiber was found to be 20~30%. As a result, it is concluded that VF/PP system has better interfacial adhesion properties than either KF/PP or PAF/PP.

  • PDF

An Experimental Study on the Fire Risk Assessment & Calculation Breakthrough Time through Permeation Test of Chemical Protective Clothing (화학보호복의 화재위험성 및 화학적 투과시험을 통한 파과시간산정에 관한 실험적 연구)

  • Ko, Jae-Sun;Park, Pyoung-Kyu
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.21-30
    • /
    • 2010
  • We have test chemical resistance and flame retardant properties of chemical protective clothing Fabrics by the ASTM and ISO standard methods. The flame retardant test results show that polyethylene is poor in flame resistance but fluoroelastomer add to decabrom is excellent in flame resistance. Especially, nowadays heat protective clothing for firefighters, which is aluminized film layers laminated to aramid fabric, show the excellent flame resistance. However, the chemical resistance test results show that aluminium is high corrosive in 4M NaOH solution alone. The problem of corrosion can be overcome by employing multiple barrier film. Also, based on the result of flame retardant test, duel skin of polymer barrier film add to aluminum film and single skin of fluorinated rubber with flame retardant materials seems to be fit for the chemical protective clothing. Also the thermal protection and heat transfer test results show that TPP and HTI is increased assured that the continued study on fire risk assessment & chemical resistance of chemical protective clothing fabrics will contribute to the upgrade the performances of chemical protective clothing fabrics.

Repair of Pre-cracked Reinforced Concrete (RC) Beams with Openings Strengthened Using FRP Sheets Under Sustained Load

  • Osman, Bashir H.;Wu, Erjun;Ji, Bohai;Abdulhameed, Suhaib S.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.171-183
    • /
    • 2017
  • Strengthening reinforced concrete (RC) beams with openings by using aramid fiber reinforcement polymers (AFRP) on the beams' surfaces offers a useful solution for upgrading concrete structures to carry heavy loads. This paper presents a repairing technique of the AFRP sheets that effectively strengthens RC beams, controls both the failure modes and the stress distribution around the beam chords and enhances the serviceability (deflection produced under working loads be sufficiently small and cracking be controlled) of pre-cracked RC beams with openings. To investigate the possible damage that was caused by the service load and to simulate the structure behavior in the site, a comprehensive experimental study was performed. Two unstrengthened control beams, four beams that were pre-cracked before the application of the AFRP sheets and one beam that was strengthened without pre-cracking were tested. Cracking was first induced, followed by repair using various orientations of AFRP sheets, and then the beams were tested to failure. This load was kept constant during the strengthening process. The results show that both the preexisting damage level and the FRP orientation have a significant effect on strengthening effectiveness and failure mode. All of the strengthened specimens exhibited higher capacities with capacity enhancements ranging from 21.8 to 66.4%, and the crack width reduced by 25.6-82.7% at failure load compared to the control beam. Finally, the authors present a comparison between the experimental results and the predictions using the ACI 440.2R-08 guidelines.

Study on the Mechanical Properties of Polyketone Fiber according to Dyeing and Finishing Process (폴리케톤 섬유의 염색 및 후가공 처리에 따른 기계적 물성에 관한 연구)

  • Kim, Sang Yong;Kim, Kyung Min;Lee, Won;Lee, Deuk Jin;Whang, Sun Dong;Yang, Sung Yong
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.97-103
    • /
    • 2017
  • Polyketone fiber, a newly developed high strength fiber, has a tenacity and modulus similar to the p-aramid fiber, and can be used for reinforcing mechanical rubber goods(MRG), such as tires, hoses, and technical textiles. It will be expected for replacement of super fiber such as aramids and increasing the technical textile market share. This paper surveys the mechanical properties of polyketone fiber for technical textiles. For this purpose, dyed polyketone fabric is prepared, mechanical properties of coated and uncoated polyketone fabrics such as tensile strength, elongation and tear strength were examined before and after weather resistance test(temperature $63{\pm}3^{\circ}C$, humidity 60%, amount of power $0.35w/m^2$). The differences of mechanical properties between uncoated and coated fabrics for high functional technical textiles and composite materials are estimated through this study. The UV-stability of polyketone fabric showed obvious improvement after coating. After 168h(7day) of UV exposure, the coated fabric showed less deterioration in mechanical properties with the retained tensile strength and elongation at break greater than 22 and 17% of the uncoated polyketone fabrics values, respectively.

Rheological Properties of Organic Fiber-Reinforced Thermoplastics (유기섬유 강화 열가소성 복합재료의 유변학적 특성)

  • Lee, Yong-Mu;Cha, Yun-Jong;Kim, Seong-Hyeon;Yun, Yeo-Seong;Yun, Ju-Ho;Choe, Hyeong-Gi
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.786-795
    • /
    • 1996
  • The fiber reinforced thermoplastics(FRTP) were prepared with polypropylene fiber(PP) as matrix and polyvinyl alchol(VF), aramid(KF) or polyamide fiber(PAF) as the reinforcing materials using the integrated fiber mixing apparatus. The reinforced thermoplastic sheets were prepared by com¬pression molding and their morphology, rheological and mechanical properties were characterized. In the morphological properties of composites, the wettability of the reinforced thermoplastics were decreased in proportion to the content of fibers. At low angular frequency, the viscosity of PAF /PP and VF/PP composite was increased with the content of reinforced fiber. However at high frequency the viscosity of composite reinforced with 5~20wt% fiber, was shown the reduced values which approaches that of the neat matrix. The mechanical properties of the composite were changed with the content of reinforecd fiber, and VF/PP and KF/PP composite had better properties than PAF/PP system.

  • PDF