• Title/Summary/Keyword: Arabidopsis root

Search Result 109, Processing Time 0.028 seconds

Overexpression of three related root-cap outermost-cell-specific C2H2-type zinc-finger protein genes suppresses the growth of Arabidopsis in an EAR-motif-dependent manner

  • Song, Sang-Kee;Jang, Hyeon-Ung;Kim, Yo Han;Lee, Bang Heon;Lee, Myeong Min
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.160-165
    • /
    • 2020
  • The root meristem of Arabidopsis thaliana is protected by the root cap, the size of which is tightly regulated by the balance between the formative cell divisions and the dispersal of the outermost cells. We isolated an enhancer-tagged dominant mutant displaying the short and twisted root by the overexpression of ZINC-FINGER OF ARABIDOPSIS THALIANA1 (ZAT1) encoding an EAR motif-containing zinc-finger protein. The growth inhibition by ZAT1 was shared by ZAT4 and ZAT9, the ZAT1 homologues. The ZAT1 promoter was specifically active in the outermost cells of the root cap, in which ZAT1-GFP was localized when expressed by the ZAT1 promoter. The outermost cell-specific expression pattern of ZAT1 was not altered in the sombrero (smb) or smb bearskin1 (brn1) brn2 accumulating additional root-cap layers. In contrast, ZAT4-GFP and ZAT9-GFP fusion proteins were distributed to the inner root-cap cells in addition to the outermost cells where ZAT4 and ZAT9 promoters were active. Overexpression of ZAT1 induced the ectopic expression of PUTATIVE ASPARTIC PROTEASE3 involved in the programmed cell death. The EAR motif was essential for the growth inhibition by ZAT1. These results suggest that the three related ZATs might regulate the maturation of the outermost cells of the root cap.

Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development

  • Park, Chan Ho;Roh, Jeehee;Youn, Ji-Hyun;Son, Seung-Hyun;Park, Ji Hye;Kim, Soon Young;Kim, Tae-Wuk;Kim, Seong-Ki
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.923-932
    • /
    • 2018
  • Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.

Effects of Simulated Sulfuric and Nitric Acid Rain on Growth and Seed Germination of Arabidopsis thaliana (인공 황산비 및 질산비가 애기장대의 생장과 종자발아에 미치는 영향)

  • 이석찬;박정안;박종범
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.659-664
    • /
    • 2003
  • The experiment was carried out to investigate the effects of sulfuric acid and nitric acid among the main components of simulated acid rain (SAR) on the growth of vegetative organs and seed germination of Arabidopsis thaliana. The Arabidopsis treated with SAR supplemented with sulfuric and nitric acids, respectively, showed 28% and 30% decrease of shoot and root growth compared to the control plants, and also many necrotic spots on leaf surfaces after SAR treatment were observed. The shoot and root length for plants grown with nitric acid rain was 14% and 17% lower, respectively, compared to the control, whereas those grown with sulfuric acid rain was 24% and 25% lower than control plants. When Arabidopsis seeds were sown in distilled water, germination rate was 100% after 7 days. However, 80% in SAR medium supplemented with sulfuric and nitric acids, 88% in sulfuric acid rain medium and 93% in nitric acid rain medium. The germination abilities of seeds harvested from SAR supplemented with sulfuric and nitric acids, sulfuric acid rain, and nitric acid rain were 73%, 73% and 94%, respectively. Consequently, sulfuric acids showed more inhibitory effects than nitric acids on the growth of vegetative organs as well as germination rates in Arabidopsis.

Bacterial Traits Involved in Colonization of Arabidopsis thaliana Roots by Bacillus amyloliquefaciens FZB42

  • Dietel, Kristin;Beator, Barbara;Budiharjo, Anto;Fan, Ben;Borriss, Rainer
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • Colonization studies previously performed with a green-fluorescent-protein, GFP, labeled derivative of Bacillus amyloliquefaciens FZB42 revealed that the bacterium behaved different in colonizing surfaces of plant roots of different species (Fan et al., 2012). In order to extend these studies and to elucidate which genes are crucial for root colonization, we applied targeted mutant strains to Arabidopsis seedlings. The fates of root colonization in mutant strains impaired in synthesis of alternative sigma factors, non-ribosomal synthesis of lipopeptides and polyketides, biofilm formation, swarming motility, and plant growth promoting activity were analyzed by confocal laser scanning microscopy. Whilst the wild-type strain heavily colonized surfaces of root tips and lateral roots, the mutant strains were impaired in their ability to colonize root tips and most of them were unable to colonize lateral roots. Ability to colonize plant roots is not only dependent on the ability to form biofilms or swarming motility. Six mutants, deficient in abrB-, sigH-, sigD-, nrfA-, yusV and RBAM017410, but not affected in biofilm formation, displayed significantly reduced root colonization. The nrfA- and yusV-mutant strains colonized border cells and, partly, root surfaces but did not colonize root tips or lateral roots.

Expression of a Functional Type-I Chalcone Isomerase Gene Is Localized to the Infected Cells of Root Nodules of Elaeagnus umbellata

  • Kim, Ho Bang;Bae, Ju Hee;Lim, Jung Dae;Yu, Chang Yeon;An, Chung Sun
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.405-409
    • /
    • 2007
  • A putative type-I chalcone isomerase (CHI) cDNA clone EuNOD-CHI was previously isolated from the root nodule of Elaeagnus umbellata [Kim et al. (2003)]. To see if it encodes a functional CHI, we ectopically overexpressed it in the Arabidopsis (Arabidopsis thaliana) transparent testa 5 (tt5) mutant, which is defective in naringenin production and has yellow seeds due to proanthocyanidin deficiency. Ectopic overexpression of EuNOD-CHI resulted in recovery of normal seed coat color. Naringenin produced by CHI from naringenin chalcone was detected in the transgenic lines like in the wild-type, whereas it was absent from the tt5 mutant. We conclude that EuNOD-CHI encodes a functional type-I CHI. In situ hybridization revealed that EuNOD-CHI expression is localized to the infected cells of the fixation zone in root nodules.

The Regulation of Root Hair-specific Expansin Genes

  • Cho, Hyung-Taeg
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.18-21
    • /
    • 2004
  • The root hair provides a major entering spot for the symbiotic legume rhizobia. It is obvious that dynamic cell wall modification occurs in the plant root hair during the early microbe invasion. Expansins are nondestructive cell wall-modifying proteins that are involved in cell growth and differentiation. Among about 40 expansin genes in Arabidopsis, two expansin genes are expressed specifically in the root hair cell. Orthologous genes of this Arabidopsis root hair expansins have been found in other Brassica members, rice, and Medicago truncatula (a legume). In this review, I discuss the probable function of expansins during the early symbiotic process between the root hair and microbes and the regulation of root hair expansin genes in a comparative approach.

Accumulated Concentration of Cadmium in the Plant Organs of Arabidopsis thaliana Grown in the Soil Contaminated with Cadmium (카드뮴에 오염된 토양에서 생장한 애기장대의 식물기관에 축적된 카드뮴 농도)

  • Park, Jong-Bum
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1015-1021
    • /
    • 2008
  • This study was performed to examine the accumulated concentrations (conc.) of cadmium (Cd) in the organs of Arabidopsis thaliana grown in the soil with different conc. of Cd. The official standard conc. of Cd of pollutant exhaust notified by the Korean ministry of environment (0.1 mg/L) and ten times higher (1 mg/L) and fifty times higher (5 mg/L) conc. and no Cd in the soil as control were used for this investigation. The results showed that accumulated conc. of Cd in the stems of plant grown in the soil with different conc. (0.1, 1 and 5 mg/L) were increased 9%, 24% and 286% respectively, compared with normal plant stem. The accumulated conc. of Cd in the leafs of plant gown in the soil with official standard conc. and conc. ten times higher and conc. fifty times higher were increased 3%, 22% and 453%, respectively, compared with normal plant leaf. The accumulated conc. of Cd in the root of plant grown in the soil with 0.1 and 1 mg/L conc. of Cd were increased 6%, 19%, respectively, compared with normal plant root. However, it was observed about 84% of increased accumulation of the Cd in the root of plant, when highest (5 mg/L) conc. was used. The accumulated conc. of Cd in the different organs of Arabidopsis thaliana were increased according to increase of Cd conc. in the soil. When official standard conc. and ten times higher conc. of Cd were used, the accumulated conc. of Cd increased average 6%, 21%, respectively, compared with normal plant organ, and the accumulated conc. of Cd between leaf, stem and root were not significant. However, the accumulated conc. of Cd in the plant organs gown in the conc. fifty times higher were increased about 285%, compared with normal plant. In addition, the accumulated conc. of Cd in different organs of Arabidopsis thaliana exhibited wide differences between organs, that is, stem was increased 118% than root, leaf was increased 256%, 64% than root and stem, respectively. These results show that accumulated conc. of Cd in Arabidopsis thaliana with highest (5 mg/L) conc. of Cd in soil, were much higher in the leaf than the stem or root in proportion to the conc. of Cd contaminated within the soil.

Effect of Colchicine on the Growth and Gravitropic Response via Ethylene Production in Arabidopsis Roots

  • Kim, Seon Woong;Park, Arom;Ahn, Dong Gyu;Kim, Soon Young
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.597-603
    • /
    • 2018
  • Inhibitory effect of colchicine on growth and gravitropic responses in Arabidopsis root was explored to find whether there was an involvement of ethylene production. It has been known that cytoskeleton components are implicated in sedimentation of statoliths to respond to gravitropism and growth. The root growth was inhibited by 25% and 40% over control for 8 hr treatment of colchicine at a concentration of $10^{-5}M$ and $10^{-7}M$, respectively. The roots treated with colchicine at the concentration of $10^{-7}M$ showed the same pattern as control in 3 hr, however, gravitropic response was decreased in the next 5 hr. The colchicine treatment at the concentration of $10^{-5}M$ inhibited the gravitropic response resulting in $60^{\circ}$ of curvature. In order to better understand the role of colchicine, the production of ethylene was measured with and without the treatment of colchicine. Colchicine increased the ethylene production by 20% when compared to control via the activation of ACC oxidase and ACC synthase activity. These results suggest that the inhibition of the growth and gravitropic responses of Arabidopsis roots by the treatment of colchicine could be attributed to the rearrangement of microtubule, and increase of ethylene production.

SHORT-ROOT Controls Cell Elongation in the Etiolated Arabidopsis Hypocotyl

  • Dhar, Souvik;Kim, Jinkwon;Yoon, Eun Kyung;Jang, Sejeong;Ko, Kangseok;Lim, Jun
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.243-256
    • /
    • 2022
  • Transcriptional regulation, a core component of gene regulatory networks, plays a key role in controlling individual organism's growth and development. To understand how plants modulate cellular processes for growth and development, the identification and characterization of gene regulatory networks are of importance. The SHORT-ROOT (SHR) transcription factor is known for its role in cell divisions in Arabidopsis (Arabidopsis thaliana). However, whether SHR is involved in hypocotyl cell elongation remains unknown. Here, we reveal that SHR controls hypocotyl cell elongation via the transcriptional regulation of XTH18, XTH22, and XTH24, which encode cell wall remodeling enzymes called xyloglucan endotransglucosylase/hydrolases (XTHs). Interestingly, SHR activates transcription of the XTH genes, independently of its partner SCARECROW (SCR), which is different from the known mode of action. In addition, overexpression of the XTH genes can promote cell elongation in the etiolated hypocotyl. Moreover, confinement of SHR protein in the stele still induces cell elongation, despite the aberrant organization in the hypocotyl ground tissue. Therefore, it is likely that SHR-mediated growth is uncoupled from SHR-mediated radial patterning in the etiolated hypocotyl. Our findings also suggest that intertissue communication between stele and endodermis plays a role in coordinating hypocotyl cell elongation of the Arabidopsis seedling. Taken together, our study identifies SHR as a new crucial regulator that is necessary for cell elongation in the etiolated hypocotyl.

The Plant Growth-Promoting Fungus Aspergillus ustus Promotes Growth and Induces Resistance Against Different Lifestyle Pathogens in Arabidopsis thaliana

  • Salas-Marina, Miguel Angel;Silva-Flores, Miguel Angel;Cervantes-Badillo, Mayte Guadalupe;Rosales-Saavedra, Maria Teresa;Islas-Osuna, Maria Auxiliadora;Casas-Flores, Sergio
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.686-696
    • /
    • 2011
  • To deal with pathogens, plants have evolved sophisticated mechanisms including constitutive and induced defense mechanisms. Phytohormones play important roles in plant growth and development, as well as in the systemic response induced by beneficial and pathogen microorganisms. In this work, we identified an Aspergillus ustus isolate that promotes growth and induces developmental changes in Solanum tuberosum and Arabidopsis thaliana. A. ustus inoculation on A. thaliana and S. tuberosum roots induced an increase in shoot and root growth, and lateral root and root hair numbers. Assays performed on Arabidopsis lines to measure reporter gene expression of auxin-induced/ repressed or cell cycle controlled genes (DR5 and CycB1, respectively) showed enhanced GUS activity, when compared with mock-inoculated seedlings. To determine the contribution of phytohormone signaling pathways in the effect elicited by A. ustus, we evaluated the response of a collection of hormone mutants of Arabidopsis defective in auxin, ethylene, cytokinin, or abscisic acid signaling to the inoculation with this fungus. All mutant lines inoculated with A. ustus showed increased biomass production, suggesting that these genes are not required to respond to this fungus. Moreover, we demonstrated that A. ustus synthesizes auxins and gibberellins in liquid cultures. In addition, A. ustus induced systemic resistance against the necrotrophic fungus Botrytis cinerea and the hemibiotrophic bacterium Pseudomonas syringae DC3000, probably through the induction of the expression of salicylic acid, jasmonic acid/ethylene, and camalexin defense-related genes in Arabidopsis.