• 제목/요약/키워드: Arabidopsis

검색결과 819건 처리시간 0.026초

Overview of Arabidopsis Resource Project in Japan

  • Kobayashi, Masatomo
    • Interdisciplinary Bio Central
    • /
    • 제3권1호
    • /
    • pp.2.1-2.4
    • /
    • 2011
  • Arabidopsis is well-known to the world's plant research community as a model plant. Many significant resources and innovative research tools, as well as large bodies of genomic information, have been created and shared by the research community, partly explaining why so many researchers use this small plant for their research. The genome sequence of Arabidopsis was fully characterized by the end of the $20^{th}$ century. Soon afterwards, the Arabidopsis research community began a 10-year international project on the functional genomics of the species. In 2001, at the beginning of the project, the RIKEN BioResource Center (BRC) started its Arabidopsis resource project. The following year, the National BioResource Project was launched, funded by the Japanese government, and the RIKEN BRC was chosen as a core facility for Arabidopsis resource. Seeds of RIKEN Arabidopsis transposon-tagged mutant lines, activation-tagged lines, full-length cDNA over-expresser lines, and natural accessions, as well as RIKEN Arabidopsis full-length cDNA clones and T87 cells, are preserved at RIKEN BRC and distributed around the world. The major resources provided to the research community have been full-length cDNA clones and insertion mutants that are suitable for use in reverse-genetics studies. This paper provides an overview of the Arabidopsis resources made available by RIKEN BRC and examples of research that has been done by users and developers of these resources.

Enhanced Resistance to Botrytis cinerea Mediated by Transgenic Expression of the Spider Chitinase Gene AvChit in Arabidopsis

  • Hur, Yeon-Jae;Kim, Doh-Hoon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제19권2호
    • /
    • pp.259-264
    • /
    • 2009
  • The AvChit gene encodes for a chitinase from the spider, Araneus ventricosus. This spider, A. ventricosus, is an abundant species in Korea. Arabidopsis thaliana plants were transformed with the AvChit gene using Agrobacterium tumefaciens. Thirteen transgenic lines expressing the AvChit gene were obtained. Functional expression of the AvChit gene in transgenic Arabidopsis was confirmed by Southern, northern and western blot analysis. The AvChit cDNA was expressed as a 61 kDa polypeptide in baculovirus-infected insect Sf9 cells. AvChit protein extracted from transgenic Arabidopsis exhibited high levels of chitinase activity. Phytopathological tests showed that two transgenic Arabidopsis lines expressing the AvChit gene displayed high levels of resistance to gray mold disease (Botrytis cinerea).

Activities of Sulfhydryl-Related and Phenylpropanoid-Synthesizing Enzymes during Leaf Development of Arabidopsis thaliana

  • Sa, Jae-Hoon;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • 제31권6호
    • /
    • pp.554-559
    • /
    • 1998
  • Activities of glutathione- and thioredoxin-related enzymes and phenylpropanoid-synthesizing enzymes were measured and compared in the developing leaves of Arabidopsis thaliana. Phenylalanine ammonia-lyase activity is maximal in the leaves of 2-wk-grown Arabidopsis. Tyrosine ammonia-lyase activity is maximal in the leaves of 3-wk-grown and 4-wk-grown Arabidopsis. Activity of thioitransferase, an enzyme involved in the reduction of various disulfide compounds, is higher in younger leaves than in older ones. A similar pattern was obtained in the activity of thioredoxin, a small protein known as a cofactor of ribonucleotide reductase and a regulator of photosynthesis. Activity of glutathione reductase is also higher in the younger leaves. Malate debydrogenase activity remains relatively constant during the development of Arabidopsis leaves. The results offer preliminary information for further approach to elucidate the mechanism of growth-dependent variations of these enzymes.

  • PDF

금속전달 유전자(MTP1)의 과발현 애기장대에서 발현 위치에 따른 내성 증가 연구 (Overexpression of the Metal Transport Protein1 gene (MTP1) in Arabidopsis Increased tolerance by expression site)

  • 김동균
    • 문화기술의 융합
    • /
    • 제5권3호
    • /
    • pp.327-332
    • /
    • 2019
  • 현대 과학자들은 식물정화공정과 같은 새로운 기술로 중금속을 제거하려고 한다. 이런 최첨단 기술 중 하나는 토양의 특정 중금속을 제거하는 형질 전환 식물을 개발하는 것이다. 본 연구자는 T. goingense Metal Transport Protein 1 유전자와 TgMTP1 : GFP 유전자를 발현하는 형질 전환 벡터를 구축했다. 형질전환체 식물을 선택하여 형질 전환 된 유전자를 애기 장대 게놈에서 확인했다. 발현은 Arabidopsis 세포, 조직 및 기관의 여러 부분에서 확인되었다. Arabidopsis thaliana에서 TgMTP1 과발현하는 식물에 중금속이온이 처리되었을 때 형질 전환 식물체는 비 형질 전환 체보다 중금속 내성이 높았다. 추가 연구를 위해 4 (Zn, Ni, Co, Cd.)가지 중금속에 대한 내성이 향상된 형질 전환 식물을 선택했다. 선택된 T3 TgMTP1 과다 발현 애기 장대 식물은 중금속에 내성이 증가된다. 이 식물은 액포 내에 중금속을 축적하고 동시에 원형질막에 발현되는 MTP1 유전자의 발현을 특징으로 한다. 결론적으로, 이러한 식물은 식물 정화 응용 분야 및 내성이 증가 된 식물로 사용될 수 있다.

Structural Characteristics of the Putative Protein Encoded by Arabidopsis AtMTN3 Gene

  • Cheong, Jong-Joo;Kwon, Hawk-Bin;Kim, Minkyun
    • Journal of Applied Biological Chemistry
    • /
    • 제44권3호
    • /
    • pp.125-130
    • /
    • 2001
  • A putative protein encoded by Arabidopsis AtMTN3 gene, a homologue of Medicago truncatula MTN3, consists of 285 amino acid residues, and has a predicted molecular mass of 31.5 kDa and a calculated pI of 9.1. Primary amino acid sequence analyses have revealed that the protein contains seven putative transmembrane regions with N-terminus oriented to the outside of the membrane. The AtMTN3 protein shows overall 16.4% of amino acid identity with the rat GALR3 protein, known to be a G-protein-coupled receptor. The gene is present as a single copy in the Arabidopsis genome, and expressed in aerial parts but not in roots of Arabidopsis. Therefore, AtMTN3 appears not to be specifically involved in Rhizobium-induced nodule development, as was predicted for the MTN3 gene. These proteins possibly mediate signal transmission through G-protein-coupled pathways during general interactions between plants and symbiotic or pathogenic microbes.

  • PDF

Expression of yeast Hem1 gene controlled by Arabidopsis HemA1 promoter improves salt tolerance in Arabidopsis plants

  • Zhang, Zhi-Ping;Yao, Quan-Hong;Wang, Liang-Ju
    • BMB Reports
    • /
    • 제43권5호
    • /
    • pp.330-336
    • /
    • 2010
  • 5-Aminolevulinate (ALA) is well-known as an essential biosynthetic precursor of all tetrapyrrole compounds, which has been suggested to improve plant salt tolerance by exogenous application. In this work, the gene encoding aminolevulinate synthase (ALA-S) in yeast (Saccharomyces cerevisiae Hem1) was introduced into the genome of Arabidopsis controlled by the Arabidopsis thaliana HemA1 gene promoter. All transgenic lines were able to transcribe the YHem1 gene, especially under light condition. The chimeric protein (YHem1-EGFP) was found co-localizing with the mitochondria in onion epidermal cells. The transgenic Arabidopsis plants could synthesize more endogenous ALA with higher levels of metabolites including chlorophyll and heme. When the $T_2$ homozygous seeds were cultured under NaCl stress, their germination and seedling growth were much better than the wild type. Therefore, introduction of ALA-S gene led to higher level of ALA metabolism with more salt tolerance in higher plants.

인공 황산비 및 질산비가 애기장대의 생장과 종자발아에 미치는 영향 (Effects of Simulated Sulfuric and Nitric Acid Rain on Growth and Seed Germination of Arabidopsis thaliana)

  • 이석찬;박정안;박종범
    • 한국환경과학회지
    • /
    • 제12권6호
    • /
    • pp.659-664
    • /
    • 2003
  • The experiment was carried out to investigate the effects of sulfuric acid and nitric acid among the main components of simulated acid rain (SAR) on the growth of vegetative organs and seed germination of Arabidopsis thaliana. The Arabidopsis treated with SAR supplemented with sulfuric and nitric acids, respectively, showed 28% and 30% decrease of shoot and root growth compared to the control plants, and also many necrotic spots on leaf surfaces after SAR treatment were observed. The shoot and root length for plants grown with nitric acid rain was 14% and 17% lower, respectively, compared to the control, whereas those grown with sulfuric acid rain was 24% and 25% lower than control plants. When Arabidopsis seeds were sown in distilled water, germination rate was 100% after 7 days. However, 80% in SAR medium supplemented with sulfuric and nitric acids, 88% in sulfuric acid rain medium and 93% in nitric acid rain medium. The germination abilities of seeds harvested from SAR supplemented with sulfuric and nitric acids, sulfuric acid rain, and nitric acid rain were 73%, 73% and 94%, respectively. Consequently, sulfuric acids showed more inhibitory effects than nitric acids on the growth of vegetative organs as well as germination rates in Arabidopsis.

Ultraviolet-activated peracetic acid treatment-enhanced Arabidopsis defense against Pseudomonas syringae pv. tomato DC3000

  • Min Cho;Se-Ri Kim;Injun Hwang;Kangmin Kim
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.215-224
    • /
    • 2023
  • Disinfecting water containing pathogenic microbes is crucial to the food safety of fresh green agricultural products. The UV-activated peracetic acid (UV/PAA) treatment process is an efficient advanced oxidation process (AOP) and a versatile approach to disinfecting waterborne pathogens. However, its effects on plant growth remain largely unknown. This study found that low-dose UV/PAA treatment induced moderate oxidative stress but enhanced the innate immunity of Arabidopsis against Pseudomonas syringae pv. (Pst) DC3000. When applied as water sources, 5- and 10-ppm UV/PAA treatments slightly reduced biomass and root elongation in Arabidopsis seedlings grown under hydroponic conditions. Meanwhile, treatments of the same doses enhanced defense against Pst DC3000 infection in leaves. Accumulation of hydrogen peroxide and callose increased in UV/PAA-treated Arabidopsis samples, and during the post-infection period, UV/PAA-treated seedlings maintained vegetative growth, whereas untreated seedlings showed severe growth retardation. Regarding molecular aspects, priming-related defense marker genes were rapidly and markedly upregulated in UV/PAA-treated Arabidopsis samples. Conclusively, UV/PAA treatment is an efficient AOP for disinfecting water and protecting plants against secondary pathogenic attacks.

Induction of Systemic Resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1

  • Elsharkawy, Mohsen Mohamed;Shimizu, Masafumi;Takahashi, Hideki;Ozaki, Kouichi;Hyakumachi, Mitsuro
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.193-200
    • /
    • 2013
  • Trichoderma asperellum SKT-1 is a microbial pesticide that is very effective against various diseases. Our study was undertaken to evaluate T. asperellum SKT-1 for induction of resistance against yellow strain of Cucumber mosaic virus (CMV-Y) in Arabidopsis plants. Disease severity was rated at 2 weeks post inoculation (WPI). CMV titre in Arabidopsis leaves was determined by indirect enzyme-linked immunosorbent assay (ELISA) at 2 WPI. Our results demonstrated that among all Arabidopsis plants treated with barley grain inoculum (BGI) of SKT-1 NahG and npr1 plants showed no significant reduction in disease severity and CMV titre as compared with control plants. In contrast, disease severity and CMV titre were significantly reduced in all Arabidopsis plants treated with culture filtrate (CF) of SKT-1 as compared with control plants. RT-PCR results showed increased expression levels of SA-inducible genes, but not JA/ET-inducible genes, in leaves of BGI treated plants. Moreover, expression levels of SA- and JA/ET-inducible genes were increased in leaves of CF treated plants. In conclusion, BGI treatment induced systemic resistance against CMV through SA signaling cascade in Arabidopsis plants. While, treatment with CF of SKT-1 mediated the expression of a majority of the various pathogen related genes, which led to the increased defense mechanism against CMV infection.

Geminivirus에 감염된 Arabidopsis 줄기의 이상세포분열에 관한 세포조직학적 연구 (Cytohistological Study of Abnormal Cell Division of Arabidopsis Stem Infected with Geminivirus)

  • 박종범;이석찬
    • 식물조직배양학회지
    • /
    • 제25권3호
    • /
    • pp.153-158
    • /
    • 1998
  • Arabidopsis thaliana에 beet curly top virus (BCTV)를 인공접종하여 외부병징 및 조직내부구조 변화를 광학현미경으로 검경하였다. BCTV-Logan에 접종된Arbidopsis thaliana ecotype Sei-O 줄기에서 약 2주 후 이상비대현상이 관찰되었고, 약 4주 후에는 캘러스조직이 형성되었다. 감염된 각 시기별로 증상부위의 Sei-O 줄기를 횡단절단하여 관찰한 결과 다음과 같은 순서, (1) 사부조직의 이상비대, (2) 이상비대된 사부의 괴사, (3) 괴사조직의 lacuna 형성, (4) lacuna형성된 사부 주위의 피층과 표피세포 신장 및 확대, (5) 신장된 피층 및 표피세포에서의 세포분열 유도, (6) 캘러스 조직의 유도 순으로 내부구조 변화가 관찰되었다. BCTV에 감염된 Arabidopsis에서의 캘러스 형성은 바이러스의 감염결과로 유도되었으며, azure-A염색법에 의해 바이러스 inclusion body는 사부조직과 캘러스에서도 존재함이 관찰되었다. 본 연구 결과 BCTV에 감염된 Arabidopsis에서 관찰된 캘러스 형성의 원인은 감염된 숙주식물의 사부조직의 괴사에 따른 lacuna 주위 피층세포의 세포분열에 기인한 것으로 사료된다.

  • PDF