• Title/Summary/Keyword: Ar-Ar age

Search Result 249, Processing Time 0.023 seconds

The Late Cretaceous Emplacement Age of Masan Hornblende-Biotite Granite (마산 각섬석-흑운모 화강암의 연령: 후기 백악기 정치연령)

  • Lee, Tae-Ho;Park, Kye-Hun;Kim, Jeongmin;Kim, Myoung Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • We have dated the K-Ar, Ar-Ar and U-Pb ages of the Masan hornblende-biotite granite in the southern Cretaceous Gyeongsang basin to constrain its emplacement age. The ~108 Ma hornblende K-Ar age obtained in the study is similar to the previously reported Rb-Sr age. However, the single grain total fusion $^{40}Ar/^{39}Ar$ dating on hornblende failed to yield statistically meaningful ages because the isotopic system was open during its alteration. Thus the hornblende K-Ar age in the study is also unlikely to be reliable. The single grain total fusion $^{40}Ar/^{39}Ar$ dating on biotite yielded an average age of $75.8{\pm}3.0Ma$. Apart from scattered data in the range of ~45-75 Ma, the average age increased to ~80 Ma. The SHRIMP and LA-MC-ICPMS U-Pb isotopic compositions of zircon from the Masan hornblende-biotite granite yielded its emplacement age as $87.6{\pm}2.7Ma$ and $86.8{\pm}0.4Ma$, respectively. It is thus likely that the ~80 Ma $^{40}Ar/^{39}Ar$ age of biotite might reflect the cooling age of Masan hornblende-biotite granite or the thermal influences from later intense igneous activities in the Gyeongsang basin.

New K-Ar dating system in Korea Basic Science Institute: Summary and Performance (한국기초과학지원연구원에 도입된 K-Ar 연대 측정시스템: 개요 및 성능)

  • 김정민
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.172-178
    • /
    • 2001
  • K-Ar dating system of Korea Basic Science Institute (KBSI) was installed in 1997 and has been used since then. The system consists of high temperature graphite furnace, gas purification system, and mass spectrometer with data acquisition system. K-Ar age is determined by the measurement of the concentrations of Ar and K through isotope dilution method using $^{38}Ar$ as spike and flame spectroscopy, respectively. The accuracy and reliability for the K-Ar age are checked using the several K-Ar standard materials. Although the exact age determination for young samples of less than 1 Ma is hampered by small fluctuations of sensitivity and mass discrimination, the present system yields the reliable K-Ar age compared to the standard materials of Tertiary and Mesozoic age. The measurements for the SORI93 biotite with the recommended K-Ar age of $92.6\pm$0.6 Ma and Bern4M muscovite of $18.5\pm$0.6 Ma yield the reliable age of $92.1\pm$1.1 Ma and $17.8\pm$0.2 Ma, respectively.

  • PDF

Tectonic Implication of 40Ar/39Ar Hornblende and Muscovite Ages for Granitic Rocks in Southwestern Region of Ogcheon Belt, South Korea (옥천대 남서부지역에 분포하는 화강암류의$^{40}Ar/^{39}Ar$ 각섬석-백운모 연령에 대한 지구조적 의미)

  • 김용준;박재봉;박영석
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.69-76
    • /
    • 1998
  • $^{40}Ar/^{39}Ar$ analytical data of hornblende and muscovite separates from granitic rocks in southwestern region of Ogcheon belt shows fellowing tectonic implication, $^{40}Ar/^{39}Ar$ data of 5 samples yield apparent age spectra and $^{37}Ar_{ca}/^{39}Ar_k$ and $^{38}Ar_{CI}/^{39}Ar_k$ plateaus for more than 60% of the $^{39}Ar$ release. Except for HN-100, the $^{36}Ar/^{40}Ar$ versus $^{39}Ar/^{40}Ar$ corelalation diagrams indicate the presence of one distint line. Muscovite of sample PKJ-44 yield flate apparent age plateau for > 60% of the $^{39}Ar_k$ release. In the high temperature steps, the $^{37}Ar_{ca}/^{39}Ar_k$ values are irregular with a correlative increase in $^{38}Ar_{CI}/^{39}Ar_k$, suggesting some Ca and CI rich phase, tapped between the silicate sheet is being argon degassed. The $^{40}Ar/^{39}Ar$ total gas age and the high temperature age of HN-100 is 918.2 Ma and 1360 Ma, respectively. The former affectted by recystallized age of Daebo Orogeny, and the latter indicated age of hornblende closure temperature for cooling stage of amphibole xenolith in granite gneiss. Three rock types of Kwangju granites show about 165 Ma hornblende and muscovite ages with some degassed argon at low temperature steps. These ages of 4 samples indicate also recrystallized age by Daebo Orogeny. In $^{40}Ar/^{39}Ar$ mineral age, Rb/Sr whole age and K/Ar mineral age, discordant ages of southwestern region of Ogcheon belt suggesting cooling rates approaching 3~4$^{\circ}C$/m. y. Such slow cooling rates can be produced by uplift rate of 100m/m.y. or slightly slower than isothem-migration rate derived from the hornblende samples. We conclude that the strongest Orogeny and igneous activity of southwestern region of Ogcheon belt are middle proterozoic era (about 1360 Ma) and middle Jurassic period (about 165 Ma).

  • PDF

Age and Stratification of Dinosaur Eggs and Clutches from Seonso Formation, South Korea

  • Kim, Cheong-Bin;Kim, Jeong-Min;Huh, Min
    • Journal of the Korean earth science society
    • /
    • v.29 no.5
    • /
    • pp.386-395
    • /
    • 2008
  • The absolute age of lapilli tuff in sedimentary formation that contains dinosaur fossils in the Boseong area, Korea was determined radiometrically against volcanic rocks below and above the fossil-bearing horizons. The sanidine in the lapilli tuff below the fossil-bearing horizon (Seonso formation) has an $^{40}Ar-^{39}Ar$ age of $81.l{\pm}1.4Ma$. The Pilbong tuff above Seonso formation has an $^{40}Ar-^{39}Ar$ age of $81.0{\pm}2.4Ma$. An andesite dyke intruding all sedimentary units yields an $^{40}Ar-^{39}Ar$ age of $42.4{\pm}2.5Ma$. Thus 81 Ma age can be regarded as the best estimate for the age of the Seonso Formation and the associated the dinosaur eggs. This age correlates well with dinosaur fossil finds in the Haenam and Koseong regions of Korea. The occurrence of dinosaur eggs and clutches attests to the existence of dinosaurs in southern Korea at least inCampanian times.

$^{40}Ar^{/39}Ar$ Age of the Volcanic Pebbles Within the Silla Conglomerate and the Deposition Timing of the Hayang Group (백악기 신라역암 내 화산암력의 $^{40}Ar^{/39}Ar$ 연대 및 하양층군의 퇴적시기에 대한 고찰)

  • Kim Chan-Soo;Park Kye-Hun;Paik In-Sung
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • Hornblende $^{40}Ar/^{39}Ar$ age of $113.4{\pm}2.4(2{\sigma})$ Ma was determined from the volcanic pebble of the Silla Conglomerate which belongs to the Hayang Group of the Cretaceous Gyeongsang Supergroup. This age corresponds to the top of Aptian. Based on the reported age information, onset and duration of deposition of the constituting formations of the Hayang Group are constrained as follows; deposition of the Jindong Formation started from ca. 96~97 Ma and lasted for about 15 Ma. Therefore, Jindong Formation was deposited since Cenomanian to Santonian and it is likely to be extended to the early Campanian. We propose 81~80 Ma, which is in early Campanian, as the boundary between Hayang and Yucheon Groups. We suggest that the Silla Conglomerate was deposited during the early Albian and the Haman Formation was deposited during the rest of the Albian and also during the Cenomanian. The Chilgok Formation seems to be deposited during the late Aptian.

A review on the K-Ar Ages of Quartz Schist in the Okdong Fault Zone: Robust Enough for the Evidence for the Precambrian Deposition of the Jangsan Formation? (옥동단층대 석영편암의 K-Ar 연령에 대한 검토: 장산층의 선캠브리아기 퇴적에 대한 확실한 증거로 활용 가능한가?)

  • Kim, Myoung Jung;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.67-72
    • /
    • 2018
  • The K-Ar ages of a sericite quartz schist in the lower Jangsan Formation along the Okdong fault zone reported by Yun (1983) have attracted attention again because of their potential to constrain the depositional timing of the Jangsan Formation. The oldest age of $562{\pm}2Ma$ among three reported K-Ar ages in the schist led to the claim that the depositional period of the lowermost Jangsan Formation in the Joseon Supergroup is late Neoproterozoic. Its depositional age is important for understanding the tectonic evolution of the Korean Peninsula including the formation and evolution histories of its sedimentary basins. Thus, the reliability and geological meaning of three K-Ar ages in the original paper (Yun, 1983) were revisited in the review. Quartz grains in the analyzed sample contain a considerable amount of excess Ar, and therefore it is inappropriate to use the ages as a basis for a depositional age constraint of the Jangsan Formation. The timing of mylonitization in the schist is recalculated as ~170 Ma.

Geochronology and Petrogenesis on the Older Granitic Rocks collected across the Ryeongnam Massif, Korea (영남육괴(嶺南陸塊)에 분포(分布)하는 고기화강암질암(古期花崗巖質岩)의 지질연대(地質年代)와 성인(成因)에 대(對)한 연구(硏究))

  • Kim, Yong Jun
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.151-162
    • /
    • 1986
  • The older granitic rocks of the study area are composed of mainly orthogneiss and foliated granite. These rocks shows mostly mortar or fiaser structure by strong mylonitization and thermal metamorphism during several orogenies. $^{40}Ar-^{39}Ar$ incremental·release ages of these rocks have been determined for 6 hornblende. 7 muscovite and 4 biotite concentrates separated from rocks collected across the Ryeongnam massif. Most $^{40}Ar-^{39}Ar$ age are discordant with Rb-Sr whole rock age of the same area. These ages range from 1998 to 172Ma. This discordant age is interpreted to indicate that samples were in contact with Daebo granite body that was characterized by large and variable $^{40}Ar-^{39}Ar$ ratios. Such ratios most likely resulted from widespread diffusion of the argon liberated from older granitic rocks during several metamorphic overprint. The general trend of the chemical composition of these rocks suggest that most of them are some series of differentiated products by fractional crystallization.

  • PDF

Expression of steroidogenic acute regulatory protein mRNA in immature and adult rat testes (미성숙과 성숙한 흰쥐 고환에서의 Steroidogenic acute regulatory protein mRNA의 발현)

  • Koh, Phil-ok;Kwak, Soo-dong
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.229-236
    • /
    • 2000
  • The synthesis of steroid hormone starts from cholesterol. Steroidogenic acute regulatory protein (StAR) acutely transfers cholesterol from the outer mitochondrial membrane to the inner in the early step of steroidogenesis. Many kinds of steroid hormone are mainly synthesized in adrenal grand, ovary, and testis. Among the steroid hormone, testosterone is synthesized in Leydig cells of the testis, the production of testosterone significantly increases in adult testis after puberty onset. Therefore, we think that the expression of StAR mRNA in testis will change according to the testicular development. The aim of this study is to determine the distribution of StAR mRNA in immature and adult rat testes and to confirm the functions of StAR in these testes. Thus, in situ hybridization was used in rat testes of the 2, 4, and 10 weeks of age. StAR mRNA was expressed in Leydig cells. Positive signals of StAR mRNA were weakly detected in Leydig cells of the 2 weeks of age. But, StAR mRNA was strongly expressed in Leydig cells of the 4 and 10 weeks of age, where steroidogenesis actively occur. In our results, the pattern of StAR mRNA expression was similar to the pattern of testosterone production in immature and adult rat testes. In conclusion, we can suggest that StAR acts as an important factor to regulate the synthesis of testosterone in Leydig cells of the rat testis.

  • PDF

A LONGITUDINAL STUDY ON THE INTERRELATIONSHIP BETWEEN THE GROWTH CHANGE OF THE MANDIBLE AND DEVELOPMENTAL AGE OF GROWING GIRLS (성장기 소녀에서 하악골 성장 변화와 발육 연령의 상호 관계에 대한 누년적 연구)

  • Kim, Young-Joon;Sohn, Byung-Wha
    • The korean journal of orthodontics
    • /
    • v.22 no.3 s.38
    • /
    • pp.603-615
    • /
    • 1992
  • This study was undertaken to investigate the interrelationship between the growth change of mandible and the developmental age of growing girls in the longitudinal data from 7 years to 15 years. The data were obtained from maturation stage of cervical vertebrae through the serial lateral cephalogram, height increment records which was taken at one year interval, menarche date through interview. On the basis of findings of this study, the following conclusions were obtained. 1. In general the growth of mandible (Ar-Pog, Ar-Go, Go-Pog) showed two peaks of growth velocity. 2. The maximum growth of mandible (Ar-Pog, Ar-Go, Go-Pog) almost appeared between stage 3 and stage 4 in maturation of cervical vertebrae. 3. It showed the tendency that the maximum increment of height appeared faster than that of mandible (Ar-Pog, Ar-Go, Pog-Go). 4. The maximum growth of height almost appeared between stage 2 and stage 3 in maturation of cervical vertebrae. 5. It showed the tendency that the menarche appeared later than the maximum growth of mandible (Ar-Pog, Ar-Go, Pog-Go). 6. The menarche almost appeared at stage 4, stage 5 in maturation of cervical vertebrae.

  • PDF

K-Ar ages of the hydrothermal clay deposits and the surrounding igneous rocks in southwest Korea (한국 남서부의 열수점토광상과 주변암에 대한 K-Ar 연대 측정)

  • Kim In Joon;Nagao Keisuke
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.58-70
    • /
    • 1992
  • From the K-Ar age determinations for the clay deposits and their surrounded rocks in southwest Korea, the ages of the ore formation in all clay deposits fall in very narrow range from 78.1 to 81.4 Ma. K-Ar ages of clay deposits are slightly younger than those of the Cretaceous volcanic rocks (Hwangsan Formation, 81.4 to 86.4 Ma) and are slightly older than those of the Cretaceous granitic rocks (77.1 to 81.5 Ma). These results indicate that clay deposits were formed with genetical relation to late Cretaceous felsic magmatism. Weolgagsan granite, which has been previously considered to be Cretaceous, is proved to be formed its age in Jurassic (140.9 and 144.8 Ma). The close relationships of K-Ar ages between the clay deposits and Cretaceous granitic rocks suggest that the clay deposits were formed during the hydrothermal alterations caused by the thermal effects (hydrothermal circulation) of the granitic intrusions rather than by the hydrothermal activities associated with volcanic activities.

  • PDF