• Title/Summary/Keyword: Ar rate

Search Result 981, Processing Time 0.029 seconds

Dry Etching Characteristics of GaN using a Planar Inductively Coupled CHsub $CH_4/H_2/Ar$ Plasma (평판 유도 결합형 $CH_4/H_2/Ar$ 플라즈마를 이용한 GaN 건식 식각 특성)

  • Kim, Mun-Yeong;Baek, Yeong-Sik;Tae, Heung-Sik;Lee, Yong-Hyeon;Lee, Jeong-Hui;Lee, Ho-Jun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.616-621
    • /
    • 1999
  • A planar inductively coupled $CH_4/H_2/Ar$plasma was used to investigate dry etch characteristics of GaN as a function of input power, RF bias power, and etch gas composition. Etch rate of GaN increased with input power up to 600 W and was saturated at the higher power. Also, the etch rates increased with increasing RF bias power, composition of $CH_4$ and Ar gas. We achieved the maximum etch rate of $930{\AA}$/min at the input power 400 W, RF bias power 250 W, and operational pressure 10 mTorr. This paper shows that smooth etched surface having roughness less than 1 nm in rms can be obtained by using planar inductively coupled plasma with $CH_4/H_2/Ar$ gas chemistry.

  • PDF

Etching Characteristics of Ba2Ti9O20(BTO) Thin Films in Inductively Coupled an Ar/Cl2 Plasma (Ar/Cl2 혼합가스를 이용한 Ba2Ti9O20(BTO) 박막의 유도결합 플라즈마 식각)

  • Kim, Young-Keun;Kwon, Kwang-Ho;Lee, Hyun-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.276-279
    • /
    • 2011
  • This work, the etching characteristics of $Ba_2Ti_9O_{20}$(BTO) thin films were investigated using an inductively coupled plasma (ICP) of $Ar/Cl_2$ gas mixture. The etch rate of BTO thin films as well as the $BTO/SiO_2$ and BTO/PR etch selectivity were measured as functions of $Ar/Cl_2$ mixing ratio (0~100% Ar) at a constants gas pressure (6 mTorr), total gas flow rate (50 sccm), input power (700 W) and bias power (200 W). The etch rate of BTO thin films decreased with increasing Ar fraction. To analyze the etching mechanism an optical emission spectroscopy (OES), double Langmuir probe(DLP) and surface analysis using X-ray photoelectron spectroscopy (XPS) were carried out.

Model-Based Analysis of the $ZrO_2$ Etching Mechanism in Inductively Coupled $BCl_3$/Ar and $BCl_3/CHF_3$/Ar Plasmas

  • Kim, Man-Su;Min, Nam-Ki;Yun, Sun-Jin;Lee, Hyun-Woo;Efremov, Alexander M.;Kwon, Kwang-Ho
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.383-393
    • /
    • 2008
  • The etching mechanism of $ZrO_2$ thin films and etch selectivity over some materials in both $BCl_3$/Ar and $BCl_3/CHF_3$/Ar plasmas are investigated using a combination of experimental and modeling methods. To obtain the data on plasma composition and fluxes of active species, global (0-dimensional) plasma models are developed with Langmuir probe diagnostics data. In $BCl_3$/Ar plasma, changes in gas mixing ratio result in non-linear changes of both densities and fluxes for Cl, $BCl_2$, and ${BCl_2}^+$. In this work, it is shown that the non-monotonic behavior of the $ZrO_2$ etch rate as a function of the $BCl_3$/Ar mixing ratio could be related to the ion-assisted etch mechanism and the ion-flux-limited etch regime. The addition of up to 33% $CHF_3$ to the $BCl_3$-rich $BCl_3$Ar plasma does not influence the $ZrO_2$ etch rate, but it non-monotonically changes the etch rates of both Si and $SiO_2$. The last effect can probably be associated with the corresponding behavior of the F atom density.

  • PDF

Spectral Analysis of Heart Rate Variability in ECG and Pulse-wave using autoregressive model (AR모델을 이용한 심전도와 맥파의 심박변동 스펙트럼 해석)

  • Kim NagHwan;Lee EunSil;Min HongKi;Lee EungHyuk;Hong SeungHong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.15-22
    • /
    • 2000
  • The analysis of power spectrum based on linear AR model is applied widely to quantize the response of autonomic nerve noninvasively, In this paper, we estimate the power spectrum density for heartrate variability of the electrocadiogram and pulse wave for short term data(less than two minute), The time series of heart rate variability is obtained from the time interval(RRI, PPI) between the feature point of the electrocadiogram and pulse wave for normal person, The generated time series reconstructed into new time series through polynomial interpolation to apply to the AR mode. The power spectrum density for AR model is calculated by Burg algorithm, After applying AR model, the power spectrum density for heart rate variability of the electrocadiogram and the pulse wave is shown smooth spectrum power at the region of low frequence and high frequence, and that the power spectrum density of electrocadiogram and pulse wave has similar form for same subject.

  • PDF

Infinite Selectivity Etching Process of Silicon Nitride to ArF PR Using Dual-frequency $CH_2F_2/H_2/Ar$ Capacitively Coupled Plasmas (Dual-frequency $CH_2F_2/H_2/Ar$ capacitively coupled plasma를 이용한 실리콘질화물과 ArF PR의 무한 선택비 식각 공정)

  • Park, Chang-Ki;Lee, Chun-Hee;Kim, Hui-Tae;Lee, Nae-Eung
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.3
    • /
    • pp.137-141
    • /
    • 2006
  • Process window for infinite etch selectivity of silicon nitride $(Si_3N_4)$ layers to ArF photoresist (PR) was investigated in dual frequency superimposed capacitive coupled plasma (DFS-CCP) by varying the process parameters such as low frequency power $(P_{LF})$, $CH_2F_2$ and $H_2$ flow rate in $CH_2F_2/H_2/Ar$ plasma. It was found that infinite etch selectivities of $Si_3N_4$ layers to the ArF PR on both blanket and patterned wafers can be obtained for certain gas flow conditions. The etch selectivity was increased to the infinite values as the $CH_2F_2$ flow rate increases, while it was decreased from the infinite etch selectivity as the $H_2$ flow rate increased. The preferential chemical reaction of the hydrogen with the carbon in the polymer film and the nitrogen on the $Si_3N_4$ surface leading to the formation of HCN etch by-products results in a thinner steady-state polymer and, in turn, to continuous $Si_3N_4$ etching, due to enhanced $SiF_4$ formation, while the polymer was deposited on the ArF photoresist surface.

Effects on the Al2O3 Thin Film by the Ar Pulse Time in the Atomic Layer Deposition (원자층 증착에 있어서 아르곤 펄스 시간이 Al2O3 박막에 미치는 효과)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.157-160
    • /
    • 2021
  • As an insulator for a thin film transistor(TFT) and an encapsulation material of organic light emitting diode(OLED), aluminum oxide (Al2O3) has been widely studied using several technologies. Especially, in spite of low deposition rate, atomic layer deposition (ALD) has been used as a process method of Al2O3 because of its low process temperature and self-limiting reaction. In the Al2O3 deposition by ALD method, Ar Purge had some crucial effects on the film properties. After reaction gas is injected as a formation of pulse, an inert argon(Ar) purge gas is injected for gas desorption. Therefore, the process parameter of Ar purge gas has an influence on the ALD deposited film quality. In this study, Al2O3 was deposited on glass substrate at a different Ar purge time and its structural characteristics were investigated and analyzed. From the results, the growth rate of Al2O3 was decreased as the Ar purge time increases. The surface roughness was also reduced with increasing Ar purge time. In order to obtain the high quality Al2O3 film, it was known that Ar purge times longer than 15 sec was necessary resulting in the self-limiting reaction.

The Optimization of the Selective CVD Tungsten Process using Statistical Methodology (통계적 기법을 이용한 선택적 CVD 텅스텐 공정 최적화 연구)

  • 황성보;최경근;박흥락;고철기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.12
    • /
    • pp.69-76
    • /
    • 1993
  • The statistical methodology using RSM (response surface method) was used too ptimize the deposition conditions of selective CVD tungsten process for improving the deposition rate and the adhesion property. Temperature, flow rate of SiH$_4$ and WF$_6$ and H$_2$ and Ar carrier gases were chosen for the deposition variables and process characteristics due to carrier gas were intensively investigated. It was observed that temperature was the main factor influencingthe deposition rate in the case of H$_2$ carrier gas while the reactant ratio, $SiH_{4}/WF_{6}$, had the principal effect on the deposition rate in the case of Ar carrier gas. The increased deposition rate and the good adhesion to Si were obtained under Ar carrier gas compared to H$_2$ carrier gas. The optimum conditions for deposition rate and antipeeling property were found to be the temperature range of 300~32$0^{\circ}C$ and the reactant ratio, $SiH_{4}/WF_{6}$, of 0.5~0.6.

  • PDF

Effects of Sputter Deposition Rate on the Thin Film Property (Sputtering 성막속도가 박막의 특성에 미치는 영향)

  • Lee, Ky-Am
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.152-160
    • /
    • 1993
  • In this study, we have investigated the influence of sputtering conditions (Ar pressure input powers, substrates) on coercivity and microstructures of GdFe, Co, CoCr thin films produced by the method of DC magnetron sputtering. In GdFe films, we have observed that the Gd atomic ratio was decreased with the deposition rate, and deposition rate decreased with the pressure of Ar gas and the increased linearly with input power. It was also observed that the coercivity of thin films was increased with input power. In Co films, we have investigated the deposition was increased and the Co thin film became finer structure with the increase in the input power, was increased and the Co thin film became finer structure with the increase in the input power, and the deposition rate was decreased with the pressure of Ar gas. In CoCr films, we have investigated the effects of substrates on the coercivity $(H_c)$ and the microstructure. We have found that the substrates plays a crucial role in the microstructure and the coercivity $(H_c)$.

  • PDF

The Effect of Diluent Gases on the Growth Behavior of CVD SiC (희석기체가 화학증착 탄화규소의 성장거동에 미치는 영향)

  • 최두진;김한수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.131-138
    • /
    • 1997
  • Silicon carbide films were chemically vapor deposited onto graphite substrates using MTS(Ch3SiCl3) as a source and Ar or H2 as a diluent gas. The experiments were performed at a fixed condition such as a de-position temperature of 130$0^{\circ}C$, a total pressure of 10 torr, and a flow rate of 100 sccm for each MTS and carrier gas. The purpose of this study is to consider the variation of the growth behavior with the addition of each diluent gas. It is shown that the deposition rate leads to maximum value at 200 sccm addition ir-respective of diluent gases and the deposition rate of Ar addition is faster than that of H2 one. It seems that these characteristics of deposition rate are due to varying interrelationship between boundary layer thick-ness and the concentration of a source with each diluent gas addition, when overall deposition rate is con-trolled by mass transport kinetics. The preferred orientation of (220) plane was maintained for the whole range of Ar addition. However, above 200 sccm addition, especially that of (111) plane was more increased in proportion to H2 addition. Surface morphologies of SiC films were the facet structures under Ar addition, but those were gradually changed from facet to smooth structures with H2 addition. Surface roughness be-came higher in Ar, but it became lower in H2 with increasing the amount of diluent gas.

  • PDF

High density plasma etching of novel dielectric thin films: $Ta_{2}O_{5}$ and $(Ba,Sr)TiO_{3}$

  • Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.5
    • /
    • pp.231-237
    • /
    • 2001
  • Etch rates up to 120 nm/min for $Ta_{2}O_{5}$ were achieved in both $SF_{6}/Ar$ and $Cl_{2}/Ar$ discharges. The effect of ultraviolet (UV) light illumination during ICP etching on $Ta_{2}O_{5}$ etch rate in those plasma chemistries was examined and UV illumination was found to produce significant enhancements in $Ta_{2}O_{5}$ etch rates most likely due to photoassisted desorption of the etch products. The effects of ion flux, ion energy, and plasma composition on (Ba, Sr)$TiO_3$ etch rate were examined and maximum etch rate ~90 nm/min was achieved in $Cl_{2}/Ar$ ICP discharges while $CH_{4}/H_{2}/Ar$ chemistry produced extremely low etch rates (${\leq}10\;nm/min$) under all conditions.

  • PDF