• Title/Summary/Keyword: Aquifer flow

Search Result 237, Processing Time 0.028 seconds

Evaluation of long-term stream depletion due to cyclic groundwater pumping using analytical model (해석적 모형을 이용한 주기적 지하수 양수가 하천의 수량에 미치는 장기 영향 분석)

  • Lee, Jeongwoo;Chung, Il-Moon;Kim, Nam Won
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.483-492
    • /
    • 2019
  • An analytical model was developed to estimate the stream depletion due to cyclic groundwater pumping by extending the Hunt's analytical solution which was derived from considering the hydraulic characteristics of the aquifer and the streambed. The model was applied to analyze the long-term effects of groundwater pumping on stream depletion during irrigation season. For the case of a total of 1,500 conditions according to various aquifer and streambed hydraulic characteristics and stream-well distance, the stream depletion due to cyclic groundwater pumping for 10 years was calculated and the results were graphically represented. Especially, the maximum and average stream depletion rates were calculated and compared with the results for continuous groundwater pumping. Furthermore, considering both stream depletion and return flow rates, the limit hydraulic condition that minimizes the influence of groundwater pumping for irrigation water supply on stream depletion was suggested.

An Integrated Surface Water-Groundwater Modeling by Using Fully Combined SWAT MODFLOW Model (완전연동형 SWAT-MODFLOW 모형을 이용한 지표수-지하수 통합 유출모의)

  • Kim, Nam Won;Chung, Il Moon;Won, Yoo Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.481-488
    • /
    • 2006
  • This paper suggests a novel approach of integrating the quasi-distributed watershed model SWAT with the fully-distributed groundwater model MODFLOW. Since the SWAT model has semi distributed features, its groundwater components hardly considers distributed parameters such as hydraulic conductivity and storage coefficient. Generating a detailed representation of groundwater recharge, head distribution and pumping rate is equally difficult. To solve these problems, the method of exchanging the characteristics of the hydrologic response units (HRUs) in SWAT with cells in MODFLOW by fully combined manner is proposed. The linkage is completed by considering the interaction between the stream network and the aquifer to reflect boundary flow. This approach is provisionally applied to Gyungancheon basin in Korea. The application demonstrates a combined model which enables an interaction between saturated zones and channel reaches. This interaction plays an essential role in the runoff generation in the Gyungancheon basin. The comprehensive results show a wide applicability of the model which represents the temporal-spatial groundwater head distribution and recharge.

Oxidative Degradation of PCE/TCE Using $KMnO_4$ in Aqueous Solutions under Steady Flow Conditions (유동조건에서 $KMnO_4$도입에 따른 수용액중 PCE/TCE의 산화분해)

  • Kim, Heon-Ki;Kim, Tae-Yun
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.685-693
    • /
    • 2008
  • The rates of oxidative degradation of perchloroethene (PCE) and trichloroethene (TCE) using $KMnO_4$ solution were evaluated under the flow condition using a bench-scale transport experimental setup. Parameters which are considered to affect the reaction rates tested in this study were the contact time (or retention time), and the concentration of oxidizing agent. A glass column packed with coarse sand was used for simulating the aquifer condition. Contact time between reactants was controlled by changing the flow rate of the solution through the column. The inflow concentrations of PCE and TCE were controlled constant within the range of $0.11{\sim}0.21\;mM$ and $1.3{\sim}1.5\;mM$, respectively. And the contact time was $14{\sim}125$ min for PCE and $15{\sim}36$ min for TCE. The $KMnO_4$ concentration was controlled constant during experiment in the range of $0.6{\sim}2.5\;mM$. It was found that the reduction of PCE and TCE concentrations were inversely proportional to the contact time. The exact reaction order for the PCE and TCE degradation reaction could not be determined under the experimental condition used in this study. However, the estimated reaction rate constants assuming pseudo-1st order reaction agree with those reported based on batch studies. TCE degradation rate was proportional to $KMnO_4$ concentration. This was considered to be the result of using high inflow concentrations of reactant, which might be the case at the vicinity of the source zones in aquifer. The results of this study, performed using a dynamic flow system, are expected to provide useful information for designing and implementing a field scale oxidative removal process for PCE/TCE-contaminated sites.

Evaluation of Drainage System and Coupled Analysis of Heat Transfer and Water Flow for Ice Ring formation in Daejeon LNG Pilot Cavern (대전 LNG Pilot Cavern에서의 배수시스템 평가 및 Ice Ring 형성에 관한 냉열수리 연동해석)

  • Jeong Woo-Cheol;Lee Hee-Suk;Lee Dae-Hyuck;Kim Ho-Yeong;Choi Young-Tae
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.38-49
    • /
    • 2006
  • LNG storage in lined rock cavern demands various techniques concerned with rock mechanics, thermo-mechanics and hydrogeology in design, construction and maintenance stage. LNG pilot cavern was constructed in Daejeon in order to verify these techniques. In this paper, evaluation of drainage system and ice ring formation was studied by numerical simulation. By Modflow analysis in the viewpoint of aquifer and Seep/W analysis in the viewpoint of flow system, it was verified that the drainage system in the pilot cavern was efficiently operated. Since ice ring formation can be simulated by interactive relation between heat transfer and water flow, coupled analysis of those was performed. In this analysis, the position of ice ring was presumed and it was demonstrated that the formation is affected by velocity and direction of groundwater flow.

A Study on Unsaturated Zone Characterization and Feasibility of Soil Vapor Extraction at a DNAPL-contaminated Site in Korea

  • Lee, Man Na Mi;Yeo, In Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.48-55
    • /
    • 2013
  • This study aimed at characterizing unsaturated zone at the source zone area contaminated by DNAPL and investigating feasibility of soil vapor extraction (SVE). Five boreholes with three multi-level screens at the depth of 3.0~4.5 m, 5.5~7.0 m, and 8.0~12.0 m were installed at the source zone. Pneumatic tests were performed to determine the permeability of porous medium. Permeability was estimated to be 81.6 to 203.7 darcy, depending on the applied solutions, which was contradicted by grain size analysis of cored soil samples leading to 3.51 darcy. This is due to air flow through gravel pack during the early stage of pneumatic test. Pressure-drawdown curve in the late stage also well showed the leaky aquifer type, indicating air leakage to the ground. Air flow tests were also carried out to investigate air flow connectivity between multi-level wells, indicating that the horizontal air flow was well developed between the lower screens of the wells, not between the upper and middle screens due to the leakage to the surface. For the SVE test, there was no noticeable variation in TCE vapor concentration between three different test runs: 1. 8 hours daily for 5 days, 2. 24 hours together with air blowing at another well (BH1), 3. five consecutive days. Even for five-day consecutive test, total amount of removed TCE was estimated only to be as low as 46.5 g.

Statistical Analysis of Aquifer Characteristics Using Pumping Test Data of National Groundwater Monitoring Wells for Korea (국가지하수 관측망의 양수시험 자료를 이용한 국내 대수층 특성의 통계적 분석)

  • Jeon Seon-Keum;Koo Min-HO;Kim Yongje;Kang In-Oak
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.32-44
    • /
    • 2005
  • 314 pumping test data of the National Groundwater Monitoring Wells (NGMWs) are analyzed to present statistical properties of fractured-rock and alluvial aquifers of Korea such as distribution of hydraulic conductivity, empirical relations between transmissivity and specific capacity, and time-drawdown patterns of pumping and recovery test. The mean hydraulic conductivity of alluvial aquifers (1.26 m/day) is 17 times greater than that of fractured-rock aquifers (0.076 m/day). Hydraulic conductivity of fracture-rock aquifers ranges in value over 4 orders of magnitude which coincide with representative values of fractured crystalline rocks and shows distinctive differences among rock types with the lowest values for metamorphic rocks and the highest values for sedimentary rocks. In consideration of the estimated transmissivity with some simplifying assumptions, it Is likely that $32\%$ of groundwater flow for NGMWs would occur through fractured-rock aquifers and $68\%$ through alluvial aquifers. Based on 314 pairs of data, empirical relations between transmissivity and specific capacity are presented for both fractured-rock and alluvial aquifers. Depending on time-drawdown patterns during pumping and recovery test, NGMWs are classified into $4\~5$ types. Most of NCMWs $(83.7\%)$ exhibit the recharge boundary type, which call be attributed to sources of water supply such as streams adjacent to the pumping well, the vertical groundwater flux between fractured-rock and the alluvial aquifers, and the delayed yield associated with gravity drainage occurring in unconfined aquifers.

Comparison between Passive Flux Meters and Borehole Dilution Tests to Estimate Groundwater Flux in a Karst Aquifer (플럭스미터와 단공희석시험을 이용한 카르스트 대수층 내 지하수 플럭스 측정 비교)

  • Lee, Juyeon;Yang, Minjune
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.543-552
    • /
    • 2020
  • In this study, we measured groundwater fluxes with a passive flux meter and a borehole dilution test in the Upper Floridan Aquifer. In addition, the feasibility of the passive flux meter is also evaluated within matrix and non-matrix zones. The results of the PFM (5.96 ± 1.75 cm/day) showed good agreement with those of the BHD (4.68 ± 2.99 cm/day) in matrix zones, whereas the results of the PFM (9.94 ± 0.90 cm/day) showed poor agreement with those of the BHD (1817.37 ± 1795.50 cm/day) in non-matrix zones. We assumed that the groundwater passes through the sorbent material inside the PFM. However, it could not pass through the sorbent when the groundwater flux is faster than 11 cm/day. The flow might bypass between monitoring well and the PFM. The PFM used in this study might be suitable for measuring the groundwater fluxes under 11 cm/day. Therefore, more extensive research is needed in the future to measure fast groundwater fluxes (> 11 cm/day).

Numerical Analysis of Horizontal Collector Well in Riverbank Filtration (수평 방사형 집수정 활용 강변여과 취수 수치 분석)

  • Kim, Hyoung-Soo;Jeong, Jae-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • Groundwater flow due to intake of horizontal collector well in riverbank filtration site was analyzed by use of numerical groundwater modeling program (FEFLOW 5.1). Drawdowns of groundwater table nearby collector well were evaluated according to variations of several conditions; pumping rate, thickness of aquifer, offset distance from well to shore line of stream, conductance of streambed. It is observed that the drawdowns of groundwater table are clearly changed according to the variations of these conditions. The results of sensitive analysis shows that the thickness of alluvial aquifer and the offset distance are more sensitive than the conductance of streambed in evaluation of drawdown. This result implies that hydrogeological conditions, as like thickness of aquifer and its distribution in the site are important factors in site selection and evaluating the availability of riverbank filtration intake using horizontal collector well system. It is also revealed that numerical modeling using FEFLOW with 1-D discrete element feature can give efficient quantitative evaluation of horizontal collector well and estimation of availability of riverbank filtration site.

Fresh Water Injection Test in a Fractured Bedrock Aquifer for the Mitigation of Seawater Intrusion (해수침투 저감을 위한 균열암반 대수층 내 담수주입시험)

  • Shin, Je-Hyun;Byun, Joong-Moo
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.371-379
    • /
    • 2010
  • Fresh water injection test in a fractured bedrock aquifer was applied as an efficient approach to lower saline concentrations in the saltwater-freshwater transition zone formed by seawater intrusion in a coastal area. The methodology and effectiveness of fresh water injection for hydraulically controlling seawater intrusion is overwhelmingly site dependent, and there is an urgent need to characterize the permeable fractures or unconsolidated porous formations which can allow for seawater flow and transport. Considering aquifer characteristics, injection and monitoring boreholes were optimally designed and completed to inject fresh water through sand layer and fractured bedrock, respectively. We devised and used the injection system using double packer for easy field operation and maintenance. Overall fracture distribution was systematically identified from borehole image logs, and the section of fresh water injection was decided from injection test and monitoring. With fresh water injection, the fluid electrical conductivity of the monitoring well started to be lowered by the inflow of fresh water at the specific depth. And this inflow leaded to the replacement of the fluid in the upper parts of the borehole with fresh water. Furthermore, the injection effect lasted more than several months, which means that fresh water injection may contribute to the mitigation of seawater intrusion in a coastal area.

Estimation of Specific Yield Using Rainfall and Groundwater Levels at Shallow Groundwater Monitoring Sites (충적층 지하수 관측지점의 강우량 대비 지하수위 변동 자료를 활용한 비산출율 추정)

  • Kim, Gyoobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.57-67
    • /
    • 2010
  • Specific yield is an essential parameter of the water table fluctuation method for recharge calculation. Specific yield is not easily estimated because of limited availability of aquifer test data and soil samples at National Groundwater Monitoring Stations in South Korea. The linear relationship between rainfall and water level rise was used to estimate the specific yields of aquifer for 34 shallow monitoring wells which were grouped into three clusters. In the case of Cluster-1 and Cluster-2, this method was not applicable because of low cross correlation between rainfall and water level rise and also a long lag time of water level rise to rainfall. However, the specific yields for 19 monitoring wells belonging to Cluster-3, which have relatively high cross correlation and short lag time, within 2 days after rainfall, range from 0.06 to 0.27 with mean value of 0.17. These values are within the general range for sand and gravel sediments and similar to those from aquifer test data. A detailed field survey is required to identify monitoring sites that are not greatly affected by pumping, stream flow, evapotranspiration, or delayed response of water levels to rainfall, because these factors may cause overestimation of specific yield estimates.