• Title/Summary/Keyword: Aquaporin 1

Search Result 87, Processing Time 0.021 seconds

Overexpression of Gene Encoding Tonoplast Intrinsic Aquaporin Promotes Urea Transport in Arabidopsis

  • Kim, Sun-Hee;Kim, Kang-Il;Ju, Hyun-Woo;Lee, Ho-Joung;Hong, Suk-Whan
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.102-110
    • /
    • 2008
  • Complementation assay of the urea uptake-defective yeast mutants led to the identification of the Arabidopsis AtTIP4;1 gene encoding the aquaporin. However, its physiological functions still remain elusive. In the present study, histochemical and genetic analyses were performed to understand the physiological roles of AtTIP4;1 in urea uptake. The AtTIP4;1 product was detectible in the roots, but not in the leaves, the stem, and the flower. Its promoter allowed the expression of the $\beta$-glucuronidase reporter gene in the roots and the apical meristem in Arabidopsis. The AtTIP4;1 products were induced under nitrogen-deficient conditions. To investigate the role of the tonoplast intrinsic protein in urea transport and developments, Arabidopsis with the loss- and the gain-of-function mutations by T-DNA insertion in AtTIP4;1 and 35S promoter-mediated overexpression of AtTIP4;1 were identified, respectively. The transfer DNA insertion and the AtTIP4;1-overexpressed plants showed normal growth and development under normal or abiotic stress growth conditions. The urea-uptake studies using $^{14}C$-labeled urea revealed higher accumulation of urea in the AtTIP4;1-overexpressed plants. These results provide evidence that overexpression of AtTIP4;1 leads to the increase in the urea-uptake rate in plants without detectable defects to the growth and development.

Aquaporin 8 Involvement in Human Cervical Cancer SiHa Migration via the EGFR-Erk1/2 Pathway

  • Shi, Yong-Hua;Tuokan, Talaf;Lin, Chen;Chang, Heng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6391-6395
    • /
    • 2014
  • Overexpression of aquaporins (AQPs) has been reported in several human cancers. Epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinases 1/2 (Erk1/2) are associated with tumorigenesis and cancer progression and may upregulate AQP expression. In this study, we demonstrated that EGF (epidermal growth factor) induces SiHa cells migration and AQP8 expression. Wound healing results showed that cell migration was increased by 2.79-1.50-fold at 24h and 48h after EGF treatment. AQP8 expression was significantly increased (3.33-fold) at 48h after EGF treatment in SiHa cells. An EGFR kinase inhibitor, PD153035, blocked EGF-induced AQP8 expression and cell migration and AQP8 expression was decreased from 1.59-fold (EGF-treated) to 0.43-fold (PD153035-treated) in SiHa. Furthermore, the MEK (MAPK (mitogen-activated protein kinase)/Erk (extracellular signal regulated kinase)/Erk inhibitor U0126 also inhibited EGF-induced AQP8 expression and cell migration. AQP8 expression was decreased from 1.21-fold (EGF-treated) to 0.43-fold (U0126-treated). Immunofluorescence microscopy further confirmed the results. Collectively, our findings show that EGF induces AQP8 expression and cell migration in human cervical cancer SiHa cells via the EGFR/Erk1/2 signal transduction pathway.

Effect of an Anabolic Steroid, Nandrolone Decanoate, on Aquaporin 1 and 9 Gene Expression in the Rat Epididymis

  • Seo, Hee-Jung;Kang, Hyo-Jin;Choi, In-Ho;Cheon, Yong-Pil;Lee, Ki-Ho
    • Reproductive and Developmental Biology
    • /
    • v.33 no.1
    • /
    • pp.55-61
    • /
    • 2009
  • The epididymis in the male reproductive tract is the site where spermatozoa produced from the testis become mature. The epididymis is divided into 4 different segments, initial segment and caput, corpus, and caudal epididymis, depending upon functional and morphological features. Aquaporins (Aqps) are water channel molecules, which are present in the epididymis and play a major role in removal of epididymal water, resulting in creation of microenvironment for sperm maturation and concentration of sperms. Nandrolone decanoate (ND) is a synthetic anabolic-androgenic steroid, which is used to treat clinical diseases and improve physical ability and appearance. Even though it is well determined that the ND causes the male infertility by affecting the testis, little is known the effect of the ND on the epididymis. The present study was focused to examine the effect of ND at different treatment doses and periods on expression of Aqp1 and Aqp9 genes in the epididymis of pubertal rats. Results showed that mRNA expression of Aqp1 and Aqp9 genes among the parts of the epididymis was differentially regulated by ND treatment doses. In addition, treatment periods of ND caused differential expression of Aqp1 and Aqp9 mRNAs among segments of the epididymis. Therefore, it is believed that male infertility induced by ND could be resulted not only from malfunction of the testis but also from aberrant gene expression of Aqp1 and Aqp9 in the epididymis.

Effect of Acanthopanacis cortex Water Extract on Renal Function in Ischemia/Reperfusion-lnduced Acute Renal Failure Rats (오가피(五加皮) 물추출물이 허혈-재관류로 유발된 급성 신부전에 미치는 영향)

  • Lee, An-Sook;Kang, Dae-Gil;Kim, Eun-Ju;Yang, Sun-Nye;Uhm, Jae-Yeon;An, Jun-Seok;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1201-1209
    • /
    • 2007
  • The present study was designed to examine whether water extract of Acanthopanacis cortex(AC) has an effect on renal functional parameters in association with the expression of aquaporin 2 (AQP-2) and heme oxygenase-1 (HO-1) in the ischemia/reperfusion induced acute renal failure (ARF) rats. Polyuria caused by down-regulation of renal AQP 2 in the ischemia-induced ARF rats was markedly restored by administration of AC (200 mg/kg, p.o.) with restoring expression of AQP 2 in the kidney. Administration of AC lowered the renal expression of HO-1, which was upregulated in rats with ischemia/reperfusion-induced ARF. The renal functional parameters including creatinine clearance, urinary sodium excretion, urinary osmolality, and solute-free reabsorption were also markedly restored in ischemia-ARF rats by administration of AC. Histological study also showed that renal damages in the ARF rats were abrogated by administration of AC. Taken together, the present data indicate that AC ameliorates renal defects in rats with ischemia/reperfusion-induced ARF.

Isolation and characterization of three maize aquaporin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4 involved in urea transport

  • Gu, Riliang;Chen, Xiaoling;Zhou, Yuling;Yuan, Lixing
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.96-101
    • /
    • 2012
  • Urea-based nitrogen fertilizer was widely utilized in maize production, but transporters involved in urea uptake, translocation and cellular homeostasis have not been identified. Here, we isolated three maize aquapoin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4, from a cDNA library by heterogous complementation of a urea uptake-defective yeast. ZmNIP2;1 and ZmNIP2;4 belonged to the nodulin 26-like intrinsic proteins (NIPs) localized at plasma membrane, and ZmTIP4;4 belonged to the tonoplast intrinsic protein (TIPs) at vacuolar membrane. Quantitative RT-PCR revealed that ZmNIP2;1 was expressed constitutively in various organs while ZmNIP2;4 and ZmTIP4;4 transcripts were abundant in reproductive organs and roots. Expression of ZmTIP4;4 was significantly increased in roots and expanded leaves under nitrogen starvation, while those of ZmNIP2;1 and ZmNIP2;4 remained unaffected. Functions of maize aquapoin genes in urea transport together with their distinct expression manners suggested that they might play diverse roles on urea uptake and translocation, or equilibrating urea concentration across tonoplast.

생쥐 정소에서 Aquaporin9의 발현

  • 강희정;계명찬
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.62-62
    • /
    • 2003
  • Aquaporin (AQP) family protein은 일종의 수분 전달 통로 역할을 하는 단백질로 AQP를 통한 수분의 조절은 삼투압을 통한 물의 이동과 함께 조직내 정상적인 수분의 상성 유지에 필수적이다. 현재까지 11종의 AQP이 신장·뇌·정소·안구 등에서 발현이 확인되었다. AQP9은 물 뿐 아니라 carbamide, polyol, purine, pyrimidine, urea, glycerol 등의 이동에 관여한다. 본 연구에서는 생쥐에서 출생 후 성체에 이르는 동안 정소 내 AQP9의 발현, Leydig cell의 분화에 따른 AQP9의 발현을 조사하였다. 1, 2, 4, 8주령의 정소로부터 semiquantitative RT-PCR 및 real time PCR 법으로 AQP9의 발현을 분석한 결과 1주령에서는 발현되지 않았고 2주령에서는 미량이 발현되기 시작하였고, 4주령에서는 성체의 1/2수준으로 발현량이 급격히 증가하였고 성체에서는 다량으로 발현됨이 확인되었다. Semiquantitative RT-PCR 법과 real time PCR법을 비교할 때 주령별 발현 양상은 유사하였으나 4주령과 성체에서는 두 시험법 사이에 양적인 차이가 있었다. 면역조직화학염색 결과 주로 Leydig cell에서 AQP9의 발현이 확인되었다. 성체의 정소 균질액의 Western blot 상에서 분자량 80, 55, 35 및 23 kDa의 항원이 검출되어 dimer, trimer 형태로 존재할 가능성과 당쇄 결합에 의한 단백질의 변형이 있는 것으로 추정된다. 미성숙 개체의 정소에서는 23 form이 확인되는 반면 성체에서는 35 kDa form이 주로 발현되므로 정소에서 발현되는 AQP9의 경우 Post-translation 수준에서 AQP9의 변형이 수반되는 것으로 사료되며 AQP9의 기능과의 연관성은 추후 연구되어야 할 것이다. Leydig cell은 fetal 및 adult type 2종의 세포가 정소발달 과정에 출현, 사멸, 분화하며 이들은 각기 정소발달, 성숙과 정자형성에 필요한 steroidogenesis에 관여한다. 정소 내 AQP9의 발현은 17beta HSD의 발현 양상과 같게 나타나므로 성적 성숙에 따른 정소 내 AQP9의 발현의 증가는 adult type Leydig cell의 분화와 관련된 것으로 추측된다. 성체의 정소로부터 분리한 Leydig cell-enriched culture에 hCG를 처리한 결과 배양체의 AQP9의 발현이 증가하므로 AQP9은 LH 수용체 하위 신호전달과정을 통해 Leydig cell의 steroidogenesis 또는 생성된 steroids의 분비에 요구되는 수분 및 중성용질의 이동에 관여하는 것으로 사료된다.

  • PDF

Temporal Aquaporin 11 Expression and Localization during Preimplantation Embryo Development

  • Park, Jae-Won;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.19 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • Environmental conditions during early mammalian embryo development are critical and some adaptational phenomena are observed. However, the mechanisms underlying them remain largely masked. Previously, we reported that AQP5 expression is modified by the environmental condition without losing the developmental potency. In this study, AQP11 was examined instead. To compare expression pattern between in vivo and in vitro, we conducted quantitative RT-PCR and analyzed localization of the AQP11 by whole mount immunofluorescence. When the fertilized embryos were developed in the maternal tracts, the level of Aqp11 transcripts was decreased dramatically until 2-cell stage. Its level increased after 2-cell stage and peaked at 4-cell stage, but decreased again dramatically until morula stage. Its transcript level increased again at blastocyst stage. In contrast, the levels of Aqp11 transcript in embryos cultured in vitro were as follows. The patterns of expression were similar but the overall levels were low compared with those of embryos grown in the maternal tracts. AQP11 proteins were localized in submembrane cytoplasm of embryos collected from maternal reproductive tracts. The immune-reactive signals were detected in both trophectoderm and inner cell mass. However, its localization was altered in in vitro culture condition. It was localized mainly in the plasma membrane of the blastocysts contacting with external environment. The present study suggests that early stage embryo can develop successfully by themselves adapting to their environmental condition through modulation of the expression level and localization of specific genes like AQP11.

Phosphorylation of AQP4 Water Channel Regulates Water Permeability (Aquaporin 4 water channel 인산화에 의한 수분 투과도의 조절)

  • 박권희;정동근;정진섭;이재숙;예운해;서덕준;배혜란
    • Journal of Life Science
    • /
    • v.10 no.5
    • /
    • pp.456-466
    • /
    • 2000
  • Aquaperin 4 (AQP4) is the mercurial water channel expressed abundantly in brain, especially the region related with cerebrospinal fluid reabsorption and osmoregulation. The primary structure of AQP4 water channel was elucidated but the molecular mechanism of AQP4 channel regulation is still unknown. To investigate the possible regulation of AQP4 water channel by phosphorylation via various protein kinases, osmotic water permeability of AQP4 expressed in Xenopus oocytes was measured by videomicroscopy technique. Forskolin (10 $\mu$M) did not affect osmotic water permeability of oocytes injected with AQP4 cRNA, excluding the regulation of AQP4 water cnannel by protein kinase A. Osmotic water permeability (P아래첨자) of AQP4-expressed oocytes was ingibited by the pretreatmeat of BAPTA/AM (up to 500$\mu$M), an intracellular Ca윗첨자 chelator, and calmidazolium (100$\mu$M), a specific Ca윗첨자/calmodulin antagonist, in a dose-dependent manner. The inhibition of osmotic water permeability (P아래첨자) by the calmidazolium treatment was completely reversed by the addition of calyculin A (0.1$\mu$M), a nonspecific phosphatase inhibitor. Phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, had biphasic effects on osmotic water permeability in AQP4 cRNA injected oocytes depending on its concentration; 21% increase by 100 nM PMA, 35% decrease by 1$\mu$M PMA. These effects were reversed with 2$\mu$M staurosporine, a nonspecific PKC inhibitor. These results suggest that phosphorylation of AQP4 water channel by Ca윗첨자/calmodulin kinase and protein kinase C might regulate the osmotic water permeability.

  • PDF

Conflicting Physiological Characteristics and Aquaporin (JcPIP2) Expression of Jatropha (Jatropha curcas L.) as a Bio-energy Crop under Salt and Drought Stresses (바이오에너지 작물 소재로서 자트로파의 염과 가뭄 스트레스 하에서 상반되는 생리적 특성과 아쿠아포린(JcPIP2)의 발현)

  • Jang, Ha-Young;Lee, Ji-Eun;Jang, Young-Seok;Ahn, Sung-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.183-191
    • /
    • 2011
  • This study was undertaken to collect basic knowledge of Jatropha which is one of bio-energy crops, based on the understanding of physiological and molecular aspects under salt and drought conditions. The treatments were followed as: 100, 200 and 300 mM NaCl for salt stress and 5, 10, 20 and 30% PEG for drought stress for 8 days, respectively. Leaf growth, stomatal conductance, chlorophyll fluorescence and gene expression of aquaporin (JcPIP2) of Jatropha were investigated. From 2 days after treatments, plants treated with higher than 100 mM NaCl and 10% PEG respectively were significantly suppressed in leaf length, width, and stomatal conductance, but 5% PEG treatment showed that plant growth was improved more than control plant. Semi-quantitative RT-PCR analyses revealed that the JcPIP2 gene was expressed in root, stem, cotyledon and leaves. It was not detected in leaves at 200 and 300 mM NaCl treatments. However, transcripts of JcPIP2 were induced in roots and stems under salt and drought conditions compared to those of healthy plants. Therefore, it was concluded that JcPIP2 plays an important role in improving drought tolerance.