• 제목/요약/키워드: Apriori like method

검색결과 4건 처리시간 0.017초

DISCOVERY TEMPORAL FREQUENT PATTERNS USING TFP-TREE

  • Jin Long;Lee Yongmi;Seo Sungbo;Ryu Keun Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.454-457
    • /
    • 2005
  • Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns. And calendar based on temporal association rules proposes the discovery of association rules along with their temporal patterns in terms of calendar schemas, but this approach is also adopt an Apriori-like candidate set generation. In this paper, we propose an efficient temporal frequent pattern mining using TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (1) this method separates many partitions by according to maximum size domain and only scans the transaction once for reducing the I/O cost. (2) This method maintains all of transactions using FP-trees. (3) We only have the FP-trees of I-star pattern and other star pattern nodes only link them step by step for efficient mining and the saving memory. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the Apriori algorithm and also faster than calendar based on temporal frequent pattern mining methods.

  • PDF

서픽스 검사를 이용한 단계적 순차패턴 분할 탐사 방법 (A Partition Mining Method of Sequential Patterns using Suffix Checking)

  • 허용도;조동영;박두순
    • 한국멀티미디어학회논문지
    • /
    • 제5권5호
    • /
    • pp.590-598
    • /
    • 2002
  • 효율적인 순차패턴 마이닝을 위해서는 후보패턴의 생성 비용을 줄이고 동시에 생성된 후보패턴에 대한 탐색공간을 줄여야 한다. 그러나 이전에 개발된 알고리즘들은 이러한 문제들을 효율적으로 해결하지 못하고 있다. 특히 Apriori-like 방법들은 알고리즘은 단순하지만 많은 크기의 후보패턴 집합생성, 대용량 데이터 베이스의 반복적인 탐사 등의 문제점이 있고, PrefixSpan[2]은 단계별로 분할된 프레픽스 프로젝티드(prefix projected) 데이터 베이스들을 구성 하여 후보패턴의 지지도 계산을 위한 탐색 공간을 줄이지만 프로젝티드 데이타베이스들의 구성비용이 크다는 문제점이 있다. 이러한 문제점들의 개선을 위해 본 논문에서는 새로운 순차패턴 마이닝 방법인 Suffixspan(Suffix Checked Sequential Pattern mining)을 제 안한다. Suffixspan은 순차패턴 집합의 단계별 분할특성과 서픽스(suffix) 특성을 이용하여 적은 비용으로 작은 크기의 후보패턴 집합을 생성하고, 1-프레픽스 프로젝티드 데이타베이스를 구성하여 후보패턴 검사를 위한 탐색공간을 줄인다.

  • PDF

SuffixSpan: 순차패턴 마이닝을 위한 형식적 접근방법 (SuffixSpan: A Formal Approach For Mining Sequential Patterns)

  • 조동영
    • 컴퓨터교육학회논문지
    • /
    • 제5권4호
    • /
    • pp.53-60
    • /
    • 2002
  • GSP와 같은 Apriori-like 순차패턴 마이닝 방법들은 마이닝 과정에서 많은 후보패턴들을 생성하고, 대용량 데이타베이스의 반복적인 탐색을 필요로 하는 문제점이 있다. 그리고 후보패턴들의 탐색공간을 줄이기 위해 단계별로 프레픽스-프로젝티드 (prefix-projected) 데이터베이스를 구성하는 PrefixSpan 방법은 탐색공간을 줄이지만 프로젝티드 데이터베이스의 구성비용이 문제가 된다. 효율적인 순차패턴 마이닝을 위해서는 후보패턴의 생성비용과 탐색공간을 모두 줄여야 한다. 본 논문에서는 이를 위한 새로운 순차패턴 마이닝 방법인 SuffixSpan(Suffix checked Sequential Pattern mining)을 설명하고, 이에 대한 형식적 접근을 보인다.

  • PDF

RFID 데이터 스트림에서 이동궤적 패턴의 탐사 (Mining Frequent Trajectory Patterns in RFID Data Streams)

  • 서성보;이용미;이준욱;남광우;류근호;박진수
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권1호
    • /
    • pp.127-136
    • /
    • 2009
  • 이 논문은 RFID 데이터 스트림의 변화 특성을 고려하면서 단일 패스로 이동궤적 패턴을 실시간 추출하는 새로운 기법을 제안한다. RFID, 센서와 무선 네트워크 기술의 발달로 인해 현실 세계에서 실시간으로 데이터를 수집하고 유용한 패턴을 탐사하는 연구에 많은 관심이 집중되고 있다. 스트림 데이터에서 순차 패턴 또는 이동궤적 패턴을 탐사하는 기존의 연구 기법들은 반복적으로 데이터베이스 또는 트리를 탐색하는 고비용 문제점과 시간의 변화에 따르는 동적 특성을 실시간으로 패턴에 반영하지 못하는 단점이 있다. 제안하는 기법은 시간에 따라 RFID 데이터 스트림의 변화를 정확히 반영하기 위해 시간진화 그래프를 이용하여 이진 시간관계 테이블에 빈발한 2-길이 항목간 정보를 유지한다. 또한 다중 패스의 문제점을 해결하기 위해 t 시점에 이진 시간관계 테이블을 이용하여 k-길이의 후보 이동궤적 패턴을 추론하고, t+1 시점에서 후보 패턴을 검증하는 과정을 통해 k-길이 이동궤적 패턴을 단일 패스로 추출한다. 실험결과 제안하는 기법은 기존의 Apriori-계열 기법들과 비교하여 약 7% 정도 후보 패턴의 비율이 적게 생성되어 시간 및 공간 복잡도 측면에서 우수한 성능을 보였다.

  • PDF