SuffixSpan: =Xt & otojd§ 98 AN FHI

SuffixSpan: &x}9] € wnjo] I <& 3
PFAH HUH

+
zEY

2 <%

GSP¢ 22 Apriori-like &2 ® violy Wy g e vlold Ageld B2 FRAPES Y4
3, 83 dojetwe] 2 wrEHY YL e = FAFHo vk 1l FRAPES] &
AF7He Zol7] 98 9AWE Zyda-Z2 A (prefix-projected) HiolE W] 2E FASE
PrefixSpan #'8& ®@4F7& FolAv Tz A= doleiuo]2e] FAu&o] AV At A&
ol eAdd vlo]dg AdME TRy APu L3 FA4FTHE BF Fojof ¥} & =Fd
A ol 9% A2E eaAdY vlelyd W<l SuffixSpan(Suffix checked Sequential Pattern
mining)€ A®3}i, olel ¥ FAAH Hg BRlth

SuffixSpan: A Formal Approach

For Mining Sequential Patterns
Dong-Young Cho'

ABSTRACT

have some problems such as
generating of many candidate patterns and repetitive searching of a large database. And
PrefixSpan constructs the prefix projected databases which are stepwise partitioned in the
mining process. It can reduce the searching space to estimate the support of candidate patterns,
but the construction cost of projected databases is still high. For efficient sequential pattern
mining, we need to reduce the cost to generate candidate patterns and searching space for the
generated ones. To solve these problems, we proposed SuffixSpan(Suffix checked Sequential

Typical Apriori-like methods for mining sequential patterns

Pattern mining), a new method for sequential pattern mining, and show a formal approach to

our method.

1. Introduction

There have been many researches about
sequential pattern mining to search sequential

t AN AFAEE ARIISHFHERY Fag
=E 4 0200213 99 259, YAMeE 20029 104W 289

patterns from a large sequence database[1-36,
8]. As sequential pattern mining has a large
database as a problem domain unlike
text-pattern matching[5], it should search all
sequential patterns in database. In addition, it

requires efficiency and feasibility in amount of

memory and time consumed in sequential
pattern mining.
After the first introduction{6,79], many

54 SRURERFUS =X H5A H45(2002.10)

studies about sequential pattern mining have
been donell,2,3,6,8].
methods such as

Typical
GSP[8]
candidate-generation-and-test

Apriori-like
adopts a
multiple-pass,
approach in
Although these

simple, it has some problems such as

sequential pattern mining.

Apriori-like methods are
generating of lots of candidate patterns,
repetitive searching of a large database, and
difficulty of finding long sequential patterns[2].
Recently some researches were proposed to
solve some problems caused by Apriori-like
methods[1,24,8]. Particularly PrefixSpan(2]
reduces the searching space by using the
projected databases based only on frequent
prefixes. The efficiency of PrefixSpan depends
on the construction cost of the projected
databases.

The smaller the minimal support threshold for
sequential patterns, the larger the average
length and number of sequential patterns in a
given sequence database. If the average length
of sequential patterns compared to the number
of sequential patterns of the sequence database
is long, GSP highly increases the cost of
generating candidate patterns and searching for
them. Most of all, it requires much more time
in the process of the mining since the
searching space for estimating the support of
candidate patterns generated in each step is a
whole sequence database. On the other hand, if
the average length of sequential patterns
compared to the number of sequential patterns
is small, it takes lots of cost to construct the
projected databases of PrefixSpan. Therefore
for efficient sequential pattern mining, we must
reduce the cost of generating candidate
patterns and their searching space. To solve
these problems, we improve the generation
method of candidate patterns in GSP and use
the concept of the projected database of
PrefixSpan to GSP.

In this paper, we propose SuffixSpan as a
new sequential pattern mining method which
combines the approaches of GSP and
PrefixSpan. SuffixSpan generates a small size
of candidate patterns using partition property
and suffix property at a low cost and also
uses 1-prefix projected databases as the

searching spaces for checking candidate

patterns.

2. Related work

As we mentioned in section 1, it is
necessary to compare with those of GSP,
FreeSpan, and PrefixSpan. Similar to
AprioriAll[9], GSP is also based on the fact
that supersequences of infrequent sequences
are not frequent, and repeats candidate
generation and testing in order to search all
patterns. GSP

expanding the problem area by considering

sequential contributes to
factors such as time constraints, loosely
defined transaction, taxonomies of items[8]. But
it has still some problems such as the
generation of many candidate patterns, many
scans of a large database and difficulty of
mining long sequential patternsi4,14].
FreeSpan{4] and PrefixSpan[2] was proposed
to solve the problems of Apriori-like methods.
They use projected sequence databases to
reduce the searching space.
enhanced method of
FreeSpan. FreeSpan uses frequent items to
recursively project sequence database into a
set of smaller projected databases and grow
subsequence fragments in each projected
database[4]. In frequent
prefixes are applied to the projection based on
the fact that all frequent sequences can be
found by expanding frequent prefixes[2]. The
major costs of FreeSpan and PrefixSpan are

PrefixSpan is an

PrefixSpan, only

the construction of the projected databases.

For efficient sequential pattern mining, we
need to reduce the generation cost of candidate
patterns and its searching space. Although
PrefixSpan improves these problems by using
the projected databases based on frequent
prefixes, it still has another problems in the
construction of the projected databases.
Although GSP doesn’t require the construction
of the projected databases, its performance is
limited as the searching space to estimate the
support of candidate patterns is a whole
sequence database. By using partially the
concept of the oprojected databases of

PrefixSpan and improving the generation
method of candidate patterns in GSP, our
approach make it possible to efficiently mine

sequential patterns.

3. SuffixSpan: a new method for
mining sequential patterns

In this section, we propose a new method of
sequential pattern mining, called SuffixSpan
which uses combined approaches of GSP and
PrefixSpan. The basic idea of SuffixSpan is to
generate small candidate patterns at a low cost
by using the suffix property and the partition
property of sequential patterns. Also we reduce
the searching space by using I-prefix
projected databases. The partition property
means that the set of all k-sequential patterns
can be

extensions of all (k-1)-sequential pattern sets.

partitioned by sets which are
The suffix property means that suffixes of all
(k-1)-sequential
patterns. The basic terminologies used in this

k-sequential patterns are
paper are similer to [1,24,7-9). In section 3.1,
we show a formal description for our approach.
And in section 3.2, we explain the SuffixSpan
with an example.

SuffixSpan: ®XtIiEl ool & 28 HAXN H2 LYY 5

3.1 SuffixSpan: formal approach and
algorithm

Definition 1. Given a sequence s=<eie..en>,
We define the first item of s, denoted by
first(s), as x, if e=(x), or xi, if er=(XiX2..Xm)
and m=2. And we define the last item of s,
denoted by last(s), as x, if en=(X), or Xm, if

en=(X1X2...Xm) and m=>2.

Let 1 be the set of items. Given a sequence

database S, let F be the set of all sequential
patterns in S. Let Fi, where k is a positive
integer, be the set of all k-sequential patterns
in S, and let Fx be the set of all sequential
patterns such that its first item is x, where x
€F;.. Let max be the longest length of
sequential patterns in S.
Definition 2. Given s=<ejes...en>, If €1=(x) and
x€l, let B=<es.en>. If er=(xiX2..Xm) and m=2,
where x€I and 1<i<m, let B=<eyep...en>, Where
er=e1-{xi} and 1<i<m. Then B is called a suffix
of s.

Definition 3. Given a sequence s=<ee..en>,
let a=<eje2...6m-1€m'>, B=<em'€m1....6n>, Where 1<
m<n, eéw Sem, €m=em—€m and x<y for VxEenw
and V y€ew, then a is called a prefix of s and
B is denoted as B=sla .

Definition 4. Let s=<ewex.en>€S and x&L
Then s is a x-projected sequential pattern in S
if and only if there is a prefix a for some s’€S
such that s’la=s, and last(a)=x. The set of all
x-projected sequential patterns in S, denoted
as Slx, is called the x-projected database in S.

Definition 5. Let s=<ejez..en>€S and let e;=(a
102..0m1), e2=(PiB2.Bm2), ... , €n=(¥1¥2..¥ma). The
denoted by
item-sequence(s), is 0102...GmiB1B2...Bma¥1V2. . Venn.

item-sequence of S,

56 URUFEITKES =X H53 HM43(2002.10)

The length of item-sequence(s) is i___Ell & |

s;=<abc>, sp=<albc)> and s3=
<(ab)c>. Then item-sequence(s;) = item-

Example

sequence(sz)=item-sequence(ss)=abc. The length
of item-sequence(s) is 3.

Definition 6. Let @ be an item-sequence with
length k in S and let x€l. Flkal, called a
~-partition of Fy, is the set of all k-sequential
patterns such that its item-sequence is a.
And the x-extension of F[k, al, denoted by
extension(F(k,al,x), is the set of all
(k+1)-sequential patterns such that its
item—-sequence is ax.

Definition 7. Let B be an item-sequence with
length k-1, and let XcF;.. We define the
extension of Fxi by X, denoted by
extension(F[k-1,8],X), as Uxex extension(Fk,p
xD.

Lemma 1. Let o, B be item-sequences with
length k in S. If a is not equal to B, then, for
any item x, the intersection of extension(F(k,
a]) and extension(F[k,B]) is also empty.

Lemma 2. F is partitioned by {Fx | x€F1} and
{ Fi, F2, ..., Fmax}, respectively.

Theorem 1. F is partitioned by {FxNFx |
k=1,2,...m, and xEF}.

According to Lemma 2 and Theorem 1, we
can partition the set of all sequential patterns
into disjoint subsets. Also partition sets in
each step can be recursively partitioned by
partition sets in the previous step. Using this
fact, we can generate the set of all candidate
patterns in each step.

Theorem 2. For Vk=3, VxE€F,,
partitioned by extension{Fix-; NFy,F1).

F«NFx is

Theorem 3. Let a be an item-sequence with
length k. For VX&F,, k=1, if Flkal is empty,
then Flk+l,ax] is also empty.

Theorem 4. If Flkxixz..xk] is empty, where
xi€F and 1<i<k, then Flk+1, xixz..Xk-nyX«] is

also empty, for VyEF;.

According to Theorem 2, extension(Fx-1,F1) is
the set of all candidate sequences of Fk.
Particularly, Theorem 3 and Theorem 4 provide
a method to search sequences which are not
frequent without scanning the sequence
database. For example, if F[4,bcbal of Fs is
empty, we can guess that F[5bcbaal,
F[5,bcbab], and F[5bcbac} of Fs are all empty
by theorem 3. And if F[3,bcal of F3 is empty,
we can guess that F[4,bcbal and Fi4,bccal of
F4 is also empty by Theorem 4.

Theorem 5. Let s be sequence with length k
in S. If s is a sequential pattern in S, then the
suffix of s is a (k-1)-sequential pattern in S.

According to Theorem 5, if a sequence s is
a k-sequential pattern, its suffix(s) must be a
(k-1)-sequential pattern. In addition, in order
to find out whether suffix(s) is a (k-1)
-sequential pattern or not, we will search not
the whole Fi but Fu-1NFersisummxsn from
theorem 1. Based on above several theorems,
our SuffixSpan can be summarized as follows.

Algorithm SuffixSpan Mining

// S is a sequential database

// Fiis the set of all k-sequential
length k

patterns with

// Fy is the set of all sequential patterns s such that
first(s)=x , for each xEF,
1. Input S, min_sup:
2. By Scanning S, Construct F,, F, for each x&F;:
3. By scanning S,
for each x&F,, Construct x-projected databases:
Construct F; using the same method of PrefixSpan.
For each SEFz, Frirstis) “Frirsum U {s}:
4. // construction of Fa(k=>3)
ke—2;
while (Fc=)
Catl SuffixSpan(min_sup, Fi,F1, Fx for each XEF);
ke—k+1;
5. Output FIUF2U... UFg-1),

Subroutine SuffixSpan{(min_sup, Fx, Fi,F« for each x F,)
1. Flen <8
2. By theorem 2,3,4 construct Cikei)-candisate:
3. For each S&Cy-candidate
if (S€Frirsuurtints) NF)
compute support(s) by scanning first(s)-projected DB
if (support(s) = min_sup)
FeneFoenU {s}:
Frirstsy=Frirsimy U {8}
4. Output Foe), Fx for each x&Fy

3.2 An Example of SuffixSpan

In this section, we explain the SuffixSpan
with an example in <Table 1>. First, through
scanning a given sequence database,
SuffixSpan generates the set F; of all
1-sequential patterns and the set Fz of all
2-sequential patterns. Then it generates the set
Fx of all k-sequential patterns by using Fu n(k
> 3), and it repeats this process until it
generates the set Fmax of all sequential patterns
with the longest length max. Based on
Theorem 3, 4, candidate patterns of Fx are
constructed. And scanning I-prefix projected
databases, the supports of candidate patterns
are computed. For the example in <Table 1>,

SuffixSpan performs as follows.

SuffixSpan: &XtHE olo|dE & AN HITYY 57

<Table 1> A sample sequence adatbase

Sid sequence
10 <a(abc)ac)d(cf)>
20 <ad)c(bc)ae)>

30 <(ef)(ab){df)cb

40 <eg(af)cbe)

<Table 2> 1-prefix projected databases

<x> <x>-projected databases
<(abc)(ac)d(cD)>, <(_d)elbel(ae)>, <(b}{dfich>,
<(_f)cbe>

 | <(clac)d(ch)>, <(_c)ae)>, <(df)cb>, <c>

<e> | (ac)d{c)>, <(bc)ae)>, , <c>

<d> | <(ch)>, <clbeXae)>, <(Lf)ch>

<e> | <(_D(ab)(df)cb>, <glafdcbe>

<> | <(abXdf)cb>, <cbc>

<a>

Step-1 : By scanning a given sequence
database, we construct Fi, and generate Fx=
{<x>} for each x€F,. For a given sequence
database in <Table 1>, we can acquire
Fi={<a> , <c>,<d>,<e> <f>} and F,={<a>)},
Fo={}, Fc=(<c>}, Fa={<d>}, Fe={<e>} and
Fi={<f>}, supposing that minimal support is 2.

Step-2 : By scanning a given sequence
construct the
database for each x€F;. According to Theorem

database, we x-projected
1, those projected databases are used the
searching space of SuffixSpan, For a sequence
database in <Table 1>, the projected databases
are constructed as in <Table 2>.

Step-3 : By scanning a given sequence
database, we construct the set Fa Each
sequential pattern of Fz is added to Fpmus
according to their first item first(s). In fact,
Step-2 and Step-3 can be simultaneously
performed by a scanning of a given sequence
database. The result of Step-3 is as follows.

F:NF, =
F2NFy

{<aa>,<ab>,<(ab)> <ac><ad><af>}
{<ba>,<bc>,<(bc)>,<bd>,<bf>}

1]

58 HUIUREHUKHS =X M53 H4%(2002.10)

FoNFe = {<ca>,<cb>,<cc>}
F2NFq = {<db>,<dc>}

F2NFe = {<ea>,<eb>,<ec> <ef>}
F2NFr = {<fb> <fc>}

Step—4 :© In SuffixSpan, the method to
construct Fy, Fy, and F3; is similar to that of
PrefixSpan. However, the method to obtain
Fu(k=4) is different from that of PrefixSpan.
The method to generate Fx from Fx-1(k>3) can
be explained as follows.

Most of all,

Cik-candidate = 0of Fx can be

the candidate sequence set
generated by

Fu-1NFirsesutfinesy, s 1S ignored. Otherwise, it
should be added to Fx and Fpras), if it satisfies
minimal support as the result of scanning
first(s)-projected database which is constructed
in Step-2. For example, considering s=<a(hc)>
€F; and <a>&F; in Step-4 of <Table 3>,
a-extension of <a(bc)> is s;=<a(bc)a> and
sp=<a(bca)>. suffix(s;)=<(bc)a>€EF;,

suffix(sz)=<(bca)> F3. Therefore, s; is ignored

however,

according to Theorem 5. And as a result of
scanning a-projected database, support(s;)=2=>
belongs to Fa
Considering s=<a(bc)>€F; and &F;, since

min_sup. Therefore, s;

<Table 3> SuffixSpan’'s stepwise Results for <Table 1>
Step-1 Step-2 Step 3 Step-4 Step-5
(Genetation of F1)| (Genetation of Fg) (Genetation of Fa) (Genetation of Fy) [(Genetation of Fs)
<ad> <aa>, <aba>, <albelad,
<ab>.<(ab)>, <a(bc)>,<abe> <(ab)e>, {<(ab)de> -
Fa <ac>, <(ab)d> <(ab){>,
<ad>, <aca>,<acb>,<acc>,
<al> <ade>
 <ba>, <(bcla>,<bdc>
Fy <bc>,<(be)>, -
<bd>,<bf>
F. <c> <ca>,<cb>,<ccd>, -
Fa <d> <db>,<dc> <dcb> -
<e> <ea> <eb>, <eab> <eac>,<ebc>, <efcb>
Fe <ec>,<ef>, <ecb>,
<efb><efc>
Fi <> <fb> <fe> <be>,<lcb> -

constructing extension(Fu.1, F:) and then
removing sequences that cannot be sequential
patterns by Theorem 3 and Theorem 4. For
example, in step-3 of <Table 3>, the candidate
sequence set

C3-candidgate 1S constructed by

removing the sequences that belong to
extension(Fz N F,{<e>}).extension(F2 1 Fy,{,
<e>}), extension(F:NF., { <d>, <e>, <f> }),
extension{ FzNFq, { <a>, <d>, <e>, <f> }),
extensionlF:NF,, { <d> <e> }), and
extension(F2NF;, { <a>, <d>, <e>, <f> }) in
extension(F,, F1). According to Theorem 5, if
suffix(s), where sE&Ck candidae, do0 not exist in

F[3,abb] is empty, sequence <a(bc)b> cannot
be a sequential pattern by Theorem 4. In the
same way Wwe repeat the process to obtain Fk
from Fi-1 and Fi until Fx is empty.

4. Comparison of GSP, PrefixSpan,
and SuffixSpan

The candidate-generation-and-test approach
of SuffixSpan is similar to that of GSP, but it
is different from that of GSP in the method to
generate candidate patterns and in that it uses
I-prefix projected databases instead of given

sequence database as a searching space. In
addition,

databases only once instead of recursively

SuffixSpan constructs projected
constructing projected database in each step as
in PrefixSpan.

Like almost all sequential pattern mining
methods, algorithms of GSP, PrefixSpan, and
SuffixSpan have different results in their
performances according to methods of their
implementation, since they demand a great deal
of block I/O and in-memory for dealing with a
large database. Therefore, the comparison of
these algorithms by their implementations leads
to unreliable results. In order to obtain reliable
results, it is necessary of us to perform the
comparison by an analytic method rather than
implementation. In the performance evaluation
of GSP, PrefixSpan, and SuffixSpan, the major
factors are the number of scanning of a given
sequence database, the generation cost of
candidate patterns in each step, and the testing
cost of candidate patterns. The total costs of
each algorithms are represented as follows.

(1) Cosp = a + Z; (Bi-gsp + Vi-gsp * @)

(2) Cprﬁx =2a + C +i>23 (B(i,(i‘l))*Vi~pmﬁx*Di'0)»

where 0 < pi <1

(3) Caugix = 20+C+B(2) *Z—:‘(Bi——Sutﬁx“Vi-»Sumx*Q'(1),

where 0 < q <1

Let S be a given sequence database S. In
above formula, a is the one time scanning
cost of S and C is a additional cost required
for the generation of Fz in PrefixSpan and
SuffixSpan. Bi gsp, B(,(i-1)), and Bi sum« are
generation costs of i-candidate patterns in
GSP, PrefixSpan, and SuffixSpan, respectively.

ViGgsp, VYiprefix, and Yisumix are numbers of

SuffixSpan: &=XtEE olol'd & #I8h gAY M2y 59

i-candidate patterns in GSP, PrefixSpan, and
SuffixSpan, respectively. pira and g-a are
scanning costs for its searching space in
PrefixSpan and SuffixSpan respectively. pi is
a decreasing ratio of projected databases in
PrefixSpan and q is a decreasing ratio of
1-prefix projected databases for S in
SuffixSpan, and ps is equal to g. B(,(i-1)) is
the construction cost of projected databases
which are used searching spaces for Fi In
general, is a monotonously decreasing
function, and B(max+1B(max))=0 , where max
is the length of the longest sequential patterns
in S.

If (Vaunx*q-a) is less than (Vi-gsp*a), the cost
of SuffixSpan is lower than that of GSP,
although SuffixSpan has additional costs such
as C and B(2). And if pi-a is not sufficiently

less than q-a , the cost of SuffixSpan is lower

than that of PrefixSpan because z-; B, B

(i-1)) is big. The values of pi and q are
depend on a given sequence database. In our
observation, (Bz2-gsp+¥2-gsp*a) is greater than (a
+C), and (Vamy*q-a) is less than (¥i.gsp*xa)
because q-a is sufficiently less than a and v
i-suffix 1S less than a or equal to Yi-gsp . Also pj
-a is not sufficiently less than q-a. Therefore
SuffixSpan is more efficient than GSP and
PrefixSpan, although exact values of pi and g
are depend on a given sequence database.

5. Conclusions

In this paper, we proposed SuffixSpan, a
new method for sequential pattern mining and
show a formal approach to our method. Our
basic idea is to generate small candidate
patterns at a low cost by using partition and
suffix property of sequential patterns and to
reduce the searching space by constructing

60 HZHFEHLIYY =X M5H H4%(2002.10)

1-prefix projected databases.

In general, for efficlent sequential pattern
mining, the generation cost of candidate
patterns and its searching space should be
reduced at the same time. With SuffixSpan we
can achieve this goal, by applying the idea of
projected database of PrefixSpan to GSP and
by improving the generation method for the
patterns of GSP. The
approach to SuffixSpan shown in this paper

candidate formal
provides a formal model for the problems of
sequential pattern mining.

We should make a further study on the
extension of SuffixSpan and the development
of an analytic cost model and applied systems
of SuffixSpan, considering time constraints,
loosely defined transaction, and taxonomies
among items which are defined in [11].

References

[11 M. J. Zaki. SPADE: An Efficient Algorithm
for Mining Frequent Sequences. In Proc. of
Machine Learning Journal, special issue on
Unsupervised Learning (Doug Fisher, ed.),
Vol. 42 Nos. 1/2, pages 31-60, Jan/Feb
2001.

[2] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto,
Q. Chen, U. Dayal and M-C. Hsu
PrefixSpan: Patterns
Efficiently by Prefix Projected Pattern
Growth. In. Proc. 2001 Int. Conf. Data
Engineering (ICDE’01), pages 215-224,
Heidelberg, Germany, April 2001.

[3] J. Han, J. Pei, B. Mortazavi-Asi, Q. Chen,
U. Dayal, and M.-C. Hsu. FreeSpan:
Frequent

Mining Sequential

Pattern-Projected Sequential
Pattern Mining. In Proceedings of the
Association for Computing Machinery Sixth
Knowledge

Discovery and Data Mining, pages 355-359,

International Conference on

2000.
[4] J. Han, J. Pei, Y. Yin, Mining Frequent
Patterns without Candidate Generation,

Proc. 2000, ACM-SIGMOD Int. Conf. on
Management of Data(SIGMOD’2000), pp.
1-12, Dallas TX May 2000

{51 M.Garofalakis, R. Rastogi, and K. Shim.
Spirit: Sequential pattern mining with
regular expression constraints. In Proc. 1999
Int. Conf. Very Large Data
Bases(VLdatabase99), pages 223-234,
Edinburgh, UK, Sept. 1999.

[6] R.Agrawal and R.Srikant. Mining Sequential

Proc. Of the 11th Intl
Conference on Data Engineering, Taipei,
Tiwan, March 1995.

[71 RSrikant and R.Agrawal
Generalized Association Rules. In Proc. Of

Patterns. In

Mining

the 21st Intl Conference on Very Database,
Zurich, Switzerland, September 1995.

[8] R.Srikant and R.Agrawal. Mining Sequential
Patterns: Generalizations and Performance
Improvements. Research Reports RJ 9994,
IBM Almaden Research Center, San Jose,
California, December 1995.

[9] R.Agrawal, S. Srikant, “Fast Algorithms for
Mining Association Rules”, Proc. 1994 Int.
Conf. on Very Large Data Base, pp.
487-499, Santiago, Chile, Sept. 1994.

E R

1986 we{thdtm Feu &3

(o] &AL
1988 &L o] sFA AL

(A4rer AF)
1992 e uiEa o] et (HAE W)
1993~ 8A dFd AR7eHAFe|FEE Fus
BA ok diolel 78, HFEHu S, o FHFH
E-Mail: chody@jeonju.ac.kr

