최근 정보시스템의 활용도가 높아짐에 따라, 많은 데이터를 이용하여 필요한 상품을 빠르게 추출하는 방법들에 대한 연구가 활발히 이루어지고 있다. 숨겨진 패턴을 탐색하는 연관 규칙 탐색 기법들이 많은 관심을 받고 있으며, Apriroi 알고리즘은 대표적인 기법이다. 그러나 Apriori 알고리즘은 반복적인 스캔으로 인한 탐색시간 증가 문제를 가지고 있다. 본 논문에서는 빈발항목의 탐색시간을 단축하기 위한 알고리즘을 제안한다. 제안한 알고리즘은 트랜잭션 데이터베이스를 이용하여 매트릭스를 생성하고 매트릭스에서 트랜잭션들의 평균 항목 개수와 정의한 최소 지지도를 사용하여 빈발 항목을 탐색한다. 트랜잭션의 평균 항목 개수는 트랜잭션의 수를 줄이는데 사용되고 최소 지지도는 항목을 줄이는데 사용된다. 제안한 알고리즘의 성능 평가는 기존 알고리즘과의 탐색시간 비교와 정확도 비교로 이루어진다. 실험 결과는 제안한 알고리즘이 기존의 Apriori와 매트릭스 알고리즘보다 최종 빈발 항목의 추출에서 빠르고 효율적으로 탐색이 이루어지는 것을 확인하였다.
A new association rule mining algorithm, which reflects the strategic importance of associative relationships between items, was developed and presented in this paper. This algorithm exploits the basic framework of Apriori procedures and TSAA(transitive support association Apriori) procedure developed by Hyun and Choi in evaluating non-frequent itemsets. The algorithm considers the strategic importance(weight) of feature variables in the association rule mining process. Sample feature variables of strategic importance include: profitability, marketing value, customer satisfaction, and frequency. A database with 730 transaction data set of a large scale discount store was used to compare and verify the performance of the presented algorithm against the existing Apriori and TSAA algorithms. The result clearly indicated that the new algorithm produced substantially different association itemsets according to the weights assigned to the strategic feature variables.
본 논문은 가중치를 고려한 연관규칙탐사 알고리즘(WARM)을 제시한다. 각 전략적 요소항목에 가중치를 부여하는 것과, 각 전략요소 항목별로 원시 자료값을 정규화하는 것이 이 논문에서 제시하는 알고리즘의 중요한 내용을 구성하고 있다. 본 논문은 TSAA 알고리즘을 확장 발전 시킨 연구로서 전략적 중요도를 반영하는 항목으로는 각 품목의 이익기여도, 마케팅 가치, 고객만족도 등을 사용하였다. 한 대형할인점의 실제 거래자료를 사용하여 알고리즘의 성능을 검사하였으며, Apriori, TSAA 및 WARM의 세 가지 알고리즘을 사용한 탐사결과를 비교 분석하였다. 분석의 결과 세 가지 알고리즘은 연관분석 행태에 있어서 각각 독특한 탐사행태를 보이는 것으로 나타났다.
웹 로그는 사용자가 웹 사이트의 데이터를 액세스할 때 웹 서버에 의해 기록되는 정보로써 최근 인터넷 이용의 급속한 증가로 인해 웹 로그의 활용가치가 더욱 중요하게 되었으며, 웹 로그의 분석 결과는 쇱 사용자들의 행위를 나타내는 패턴을 분석하거나 웹 사이트의 구조를 재배치 하는데 이용될 수 있다. 이를 실현하기 위한 많은 연구들은 주로 연관규칙과 순차패턴을 이용하고 있는데, 대다수는 Apriori 알고리즘을 기본으로 하고 있어서 대용량의 데이터베이스에 적용하기에는 컴퓨팅 시간적 측면에서 비효율적이다. 따라서 본 논문에서는 웹 환경에서 흥미있는 패턴을 탐사하는 새로운 알고리즘을 개발하여 보다 빠르게 패턴탐사를 수행하고, 많은 사용자들이 관심있게 순차적으로 접근하고 있는 정보를 시스템 관리자에게 제공할 수 있는 추천에이전트를 개발한다.
트리 데이터로부터 유용한 정보들을 추출하는 가장 일반적인 방식은 빈번하게 자주 발생하는 서브트리 패턴들을 얻는 것이다. XML 마이닝, 웹 사용 마이닝, 바이오인포매틱스, 네트워크 멀티캐스트 라우팅 등 빈번 트리 패턴 마이닝은 여러 다양한 영역에서 광범위하게 이용되고 있기 때문에, 해당 패턴들을 추출하기 위한 많은 알고리즘들이 제안되어 왔다. 하지만, 현재까지 제안된 대부분의 트리 마이닝 알고리즘들은 여러 가지 심각한 문제점들을 내포하고 있는데 이는 특히 대량의 트리 데이터 집합을 대상으로 했을 때는 더 심각해진다. 주요하게 발생하는 문제점들로는, (1) 계층적 트리 구조의 데이터 모델링, (2) 후보군 유지를 위한 고비용 계산, (3) 반복적인 입력 데이터 집합 스캔, (4) 높은 메모리 의존성이 대표적이다. 이런 문제점들을 발생하게 하는 주요 원인은, 대부분의 기존 알고리즘들이 apriori 방식에 근거하고 있다는 점과 후보군 생성과 빈발 횟수 집계에 anti-monotone 원리를 적용한다는 점에 기인한다. 언급한 문제들을 해결하기 위해, 본 저자들은 apriori 방식 대신 pattern-growth 방식을 기반으로 하며, 빈번 서브트리 추출 대신 최대 빈번 서브트리 추출을 목적으로 한다. 이를 통해 제안된 방법은, 빈번하지 않은 서브트리들을 제거하는 과정 자체를 배제할 뿐만 아니라, 후보군 트리들을 생성하는 과정 또한 전혀 수행하지 않음으로써 전체 마이닝 과정을 상당히 개선한다.
유비쿼터스 환경에 기반한 시장, 즉 U-마켓에서는 고객이 제품을 구매함과 동시에 고객의 정보가 u-마켓 서버시스템에 저장되어 인터넷 쇼핑몰과 같이 다양한 분석과 활용이 가능하게 되었다. 물리적인 공간과 가상 공간이 결합된 유비쿼터스 기반의 시장 환경에서는 고객이 오프라인에서 다양한 매장을 방문하면서 쇼핑을 하게 되는데, 이때 여러 매장에 동일한 제품이 동시에 존재할 수 있으므로 매장의 위치, 매장 분위기, 제품의 품질이나 가격 등에 대한 고객의 선호도를 반영하여 고객 개개인에게 적절한 매장을 추천해야 할 필요성이 제기된다. 본 논문에서는 유비쿼터스 환경에 기반한 시장에서 고객의 쇼핑 상황을 고려하여 고객의 선호를 반영할 수 있는 매장 추천방법을 제안한다. 제안한 매장 추천방법은 협업 필터링과, Apriori 알고리즘을 기반으로 구성되어 있다. 온라인 쇼핑몰과는 다르게 U-마켓에서는 고객 개개인의 구매목록과 고객의 선호도를 반영한 매장 추천이 필요하며, 본 논문에서 제안하고 있는 매장 추천방법은 고객의 쇼핑경험을 극대화 하고 쇼핑 효율성을 제고시킬 뿐 아니라 장기적인 관점에서 매출증대를 통해 U-마켓 활성화에 기여할 수 있을 것으로 기대한다.
네트워크 침입 탐지 작업에 다양한 연관 규칙 마이닝 알고리즘을 적용하는 데에는 두 가지 중요한 문제가 있다. 생성된 규칙 집합의 크기가 너무 커서 IoT 시스템에서 활용하기 어렵고, 거짓 부정/긍정 비율을 제어하기 어렵다. 본 연구에서는 coverage와 exclusion이라는 새로 정의된 척도에 기반을 둔 연관 규칙 마이닝 알고리즘을 제안한다. Coverage는 한 클래스의 트랜잭션에서 패턴이 발견되는 빈도를 나타내고, exclusion은 다른 클래스의 트랜잭션에서 패턴이 발견되지 않는 빈도를 나타낸다. 우리는 KDDcup99라는 공개 데이터 세트를 사용하여 가장 유명한 알고리즘인 Apriori 알고리즘과 실험적으로 제안된 알고리즘을 비교한다. Apriori와 비교하여 제안된 알고리즘은 정확도를 완전히 유지하면서 생성되는 규칙 집합 크기를 최대 93.2%까지 줄인다. 또한, 제안된 알고리즘은 생성된 규칙의 거짓 부정/긍정 비율을 매개변수별로 완벽하게 제어한다. 따라서 네트워크 분석가는 두 가지 문제를 해결함으로써 제안한 연관 규칙 마이닝을 네트워크 침입 탐지 작업에 효과적으로 적용할 수 있다.
최근 스마트 홈 환경은 무선 정보통신 기술과 융합을 통해서 다양한 데이터를 수집·통합·활용하는 플랫폼이 될 것으로 전망되고 있으며 실제로 스마트 홈 내부에는 다양한 센서를 탑재한 스마트 디바이스 수가 점점 증가하고 있다. 증가된 스마트 디바이스 수만큼 처리해야하는 데이터의 양도 증가하고 있으며 이를 효과적으로 처리하기 위해 빅데이터 처리 시스템이 활발하게 도입되고 있다. 그러나 기존 빅데이터 처리 시스템은 분산 노드에 할당되기 전 모든 요청이 클러스터 드라이버로 향하기 때문에 동시에 많은 요청이 발생하는 경우 분할 작업을 관리하는 클러스터 드라이버에 병목현상이 발생하고, 이는 네트워크를 공유하는 클러스터 전체의 성능감소로 이어진다. 특히 작은 데이터 처리를 지속해서 요청하는 스마트 홈 디바이스에서 지연율이 더 크게 나타난다. 이에 본 논문에서는 동시에 다수의 센서에서 요청이 발생하는 스마트 홈 환경에서 효과적인 데이터 처리를 위한 Apriori 기반 빅데이터 시스템을 설계하였다. 제안하는 시스템의 성능평가 결과에 따르면, 데이터 처리 시간은 기존 시스템에 비해 최소 19.2%에서 최대 38.6% 단축됐다. 이러한 결과가 발생한 이유는 측정되는 데이터의 형태와 관련이 있다. 스마트 홈 환경은 수집되는 데이터의 양은 방대하나 각 데이터의 용량은 작기 때문에 캐시 서버의 사용이 데이터 처리에 큰 역할을 하며, Apriori 알고리즘을 통한 연관도 분석으로 사용자의 행동 습관과 연관도가 높은 센서 데이터를 캐시에 저장하기 때문에 캐시 서버의 활용률이 매우 높다.
본 연구는 학습자 특성(성별 및 학교 급)에 따른 온라인 수업 유형 선호도를 파악하고자 하는데 그 목적이 있다. 이를 위하여 전국 17개 지역의 초·중·고등학교 학생 4,803명을 대상으로 설문조사를 실시하였다. 이후, 유효데이터인 4,524명 학생들의 성별 및 학교급을 기반한 온라인 수업 유형 선호도 패턴을 확인하기 위해 Apriori 알고리즘을 이용한 연관규칙 분석을 실시하였다. 연구결과 초등 7개, 중등 4개, 고등 5개 등 총 16개의 규칙을 도출하였으며, 학교급과 무관하게 여학생들은 메이커활동 중심 수업을, 초·중 남학생은 가상체험중심 수업을 공통적으로 선호하였다. 보다 구체적으로, 초등학교 남학생은 SW중심수업을, 여학생은 메이커활동 중심 수업을 선호하였으며, 중학생의 경우 남여 모두 가상체험중심 수업을 선호하였다. 반면 고등학생은 교과별 강의중심에 대한 선호도가 높았다. 이러한 연구결과는 학습의 주체자인 학생이 가진 온라인 수업의 요구를 설명하는 실증적 근거로서 제시될 수 있다. 또한, 본 연구는 향후 온라인 수업의 다각화를 위한 개선방향을 제시, 탐색하는 기초자료로 활용될 수 있을 것으로 기대한다. 이상의 연구결과를 바탕으로 추후 연구에서는 다양한 온라인 수업 활동 및 모델 설계, 온라인 수업을 지원하는 플랫폼 개발, 여학생의 이공계 진로동기 형성과정에 대한 심층적 분석이 계속되어야 할 것이다.
본 연구는 이공계 대학 연구과제 특성(단계 및 성격)별 R&D 운영 현황을 파악하여 향후 대학 R&D 지원 체계와 연구정책에 시사점을 제공하고자 하였다. 이에 본 연구는 2021년 10월 4일부터 약 5주간 국내 이공계 대학 R&D 수령인을 대상으로 온라인 설문을 진행한 후, Apriori 알고리즘을 활용하여 445명의 유효데이터를 분석하였다. 그 결과, 기초(원천)단계 연구 10개(일반적인 연구 6개, 도전적인 연구 4개), 응용단계 연구 6개(일반적인 연구 5개, 도전적인 연구 1개) 등 총 16개의 연관규칙이 도출되었다. 또한, 이공계 대학 R&D는 연구과제의 특성과 무관하게 정부(발주처) 혹은 공공기관(연구비결정권) 등의 주도로 운영되는 공통점이 나타났으며, 특히 응용연구의 특징(단계 및 성격)과 높은 연관성이 있었다. 기초(원천)단계연구의 경우, 연구자에게 연구주제에 대한 자율성을 제공하였으나 3년 차라는 짧은 연구 기간과 3년 이상의 단위로 연구가 평가되는 특징이 있었다. 이러한 연구 결과는 이공계 대학 연구과제 특성에 따른 운영 형태를 다양한 변인 간의 연관성을 드러내는 실증적 근거로써 활용될 수 있다. 아울러, 본 연구는 향후 이공계 대학 R&D 운영 지원을 위한 정책적·재정적·운영적 지원의 개선 방향을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.