• Title/Summary/Keyword: Approximate Equation

Search Result 485, Processing Time 0.025 seconds

A method for static and dynamic analyses of stiffened multi-bay coupled shear walls

  • Bozdogan, Kanat Burak;Ozturk, Duygu
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.479-489
    • /
    • 2008
  • In this study an approximate method based on the continuum approach and transfer matrix method for static and dynamic analyses of stiffened multi-bay coupled shear walls is presented. In this method the whole structure is idealized as a sandwich beam. Initially the differential equation of this equivalent sandwich beam is written then shape functions for each storey is obtained by the solution of differential equations. By using boundary conditions and storey transfer matrices which are obtained by these shape functions, system modes and periods can be calculated. Reliability of the study is shown with a few examples. A computer program has been developed in MATLAB and numerical samples have been solved for demonstration of the reliability of this method. The results of the samples show the agreement between the present method and the other methods given in literature.

A NEW APPROACH TO SOLVING OPTIMAL INNER CONTROL OF LINEAR PARABOLIC PDES PROBLEM

  • Mahmoudi, M.;Kamyad, A.V.;Effati, S.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.719-728
    • /
    • 2012
  • In this paper, we develop a numerical method to solving an optimal control problem, which is governed by a parabolic partial differential equations(PDEs). Our approach is to approximate the PDE problem to initial value problem(IVP) in $\mathbb{R}$. Then, the homogeneous part of IVP is solved using semigroup theory. In the next step, the convergence of this approach is verified by properties of one-parameter semigroup theory. In the rest of paper, the original optimal control problem is solved by utilizing the solution of homogeneous part. Finally one numerical example is given.

Orthogonal Grid Generation Using Linear Grid Generating Equations (선형 격자 형성 방정식을 이용한 직교 격자 형성에 관한 연구)

  • Lee S. W.;Kwon J. H.;Kwon O. J.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.14-21
    • /
    • 2000
  • A method of two and three dimensional orthogonal grid generation with control of spacing by using the covariant Laplace equation is presented. An important feature of the methodology is its ability to control effectively the grid spacing especially near the boundaries still maintaining good orthogonality in whole field. The method is based on the concept of decomposition of the global transformation into consecutive transformation of an approximate conformal mapping and an auxiliary orthogonal mapping to have linear and uncoupled equations. Control of cell spacing is based on the concept of reference arc length, and orthogonal correction is peformed in the auxiliary domain. It is concluded that the methodology can successfully generate well controlled orthogonal grids around bodies of 2 and 3 dimensional configurations.

  • PDF

Numerical Study for the Effect of Engine Exhaust Gas on the Airframe of Smart UAV (스마트무인기 엔진 배기가스가 기체에 미치는 영향에 관한 수치적 연구)

  • Lee, Chang-Ho;Kim, Cheol-Wan;Kim, Jai-Moo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.464-467
    • /
    • 2008
  • An ejector is designed for the purpose of engine bay cooling. The primary flow of the ejector is the exhaust gas of the PW206C turboshaft engine. The mass flow of secondary flow is calculated by using the approximate analytic equation. And the effect of exhaust gas flow on the fuselage surface is investigated by using the Fluent Code. Three types of exhaust duct shape were compared in the viewpoint of surface temperature and aerodynamic drag. As a result, exhaust duct shape P3 shows minimum interference of exhaust gas and fuselage and minimum increment of drag among the three candidate shapes.

  • PDF

A UNIFIED CONVERGENCE ANALYSIS FOR SECANT-TYPE METHODS

  • Argyros, Ioannis Konstantinos;Magrenan, Angel Alberto
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1155-1175
    • /
    • 2014
  • We present a unified local and semilocal convergence analysis for secant-type methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Our analysis includes the computation of the bounds on the limit points of the majorizing sequences involved. Under the same computational cost our semilocal convergence criteria can be weaker; the error bounds more precise and in the local case the convergence balls can be larger and the error bounds tighter than in earlier studies such as [1-3,7-14,16,20,21] at least for the cases of Newton's method and the secant method. Numerical examples are also presented to illustrate the theoretical results obtained in this study.

CONTROLLABILITY OF LINEAR AND SEMILINEAR CONTROL SYSTEMS

  • Jeong, Jin-Mun;Park, Jong-Yeoul;Park, Chul-Yun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.361-376
    • /
    • 2000
  • Our purpose is to seek that the reachable set of the semilinear system $\frac{d}{dt}x(t){\;}={\;}Ax(t){\;}+{\;}f(t,x(t)){\;}+{\;}Bu(t)$ is equivalent to that of its corresponding to linear system (the case where f=0).Under the assumption that the system of generalized eigenspaces of A is complete, we will show that the reachable set corresponding to the linear system is independent of t in case A generates $C_0-semigroup$. An illustrative example for retarded system with time delay is given in the last section.

  • PDF

GLOBAL CONVERGENCE OF A MODIFIED BFGS-TYPE METHOD FOR UNCONSTRAINED NON-CONVEX MINIMIZATION

  • Guo, Qiang;Liu, Jian-Guo
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.325-331
    • /
    • 2007
  • To the unconstrained programme of non-convex function, this article give a modified BFGS algorithm associated with the general line search model. The idea of the algorithm is to modify the approximate Hessian matrix for obtaining the descent direction and guaranteeing the efficacious of the new quasi-Newton iteration equation $B_{k+1}s_k=y^*_k,\;where\;y^*_k$ is the sum of $y_k\;and\;A_ks_k,\;and\;A_k$ is some matrix. The global convergence properties of the algorithm associating with the general form of line search is proved.

Analysis of Hot Gas Flew Considering Arc-Flow Interaction (아크플라즈마와 유동간의 상호작용을 고려한 열가스 유동 해석)

  • Kim, Hong-Gyu;Park, Gyeong-Yeop;Bae, Chae-Yun;Jo, Gyeong-Yeon;Jeong, Hyeon-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.3
    • /
    • pp.107-115
    • /
    • 2002
  • This parer presents the analysis of hot gas flow in puffer-type circuit breakers using FVFLIC method. For the analysis of arc-flow interaction, the flow field is analyzed from the equations of conservation for mass, momentum and energy with the assumption of local thermodynamic equilibrium state. The arc is represented as the energy source term composed of ohmic heating and radiation term in the energy conservation equation. Ohmic heating is computed by the electric field analysis only within the conducting plasma region. An approximate radiation transport model is employed for the evaluation of emission and absorption of the radiation. The analysis method was applied to the real circuit breaker model and simulation results such as pressure rise and arc voltage were compared with the experimental ones.

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.

A Study on the Distortional Analysis of Curved Steel Box Girders (곡선강박스거더의 뒤틀림 해석 및 격벽간격산정)

  • 구민세;이호경;김대홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.401-408
    • /
    • 2001
  • The main objective of this study is to analyze the distortion of curved steel box girders. For the distortional analysis of steel box girders, two approaches are presented. One is the development of approximate formulas obtained by applying Ritz method. The other is the formulation of stiffness matrix which is derived from the exact solution of the differential equation for distortion. Distortional analysis is carried out by utilizing 3-dimensional elements of a structural analysis computer program (SAP2000). The present analysis focuses on the distortional stress and the effects of the diaphragm. The results of several example cases are compared with those by the Nakai, Sakai, Heins, and Oleinik's theory and get the effect of diaphragm spacing on the distortional warping stress of the curved steel box girder.

  • PDF