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A UNIFIED CONVERGENCE ANALYSIS FOR

SECANT-TYPE METHODS

Ioannis Konstantinos Argyros and Ángel Alberto Magreñán

Abstract. We present a unified local and semilocal convergence analysis
for secant-type methods in order to approximate a locally unique solution
of a nonlinear equation in a Banach space setting. Our analysis includes
the computation of the bounds on the limit points of the majorizing
sequences involved. Under the same computational cost our semilocal
convergence criteria can be weaker; the error bounds more precise and in
the local case the convergence balls can be larger and the error bounds
tighter than in earlier studies such as [1–3,7–14,16,20,21] at least for the

cases of Newton’s method and the secant method. Numerical examples
are also presented to illustrate the theoretical results obtained in this
study.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x⋆ of the nonlinear equation

(1.1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on a nonempty subset
D of a Banach space X with values in a Banach space Y. A lot of problems
from Applied Sciences can be expressed in a form like (1.1) using mathematical
modelling [4]. The solutions of these equations can be found in closed form only
in special cases. That is why the most solution methods for these equations
are iterative. The convergence analysis of iterative methods is usually divided
into two categories: semilocal and local convergence analysis. In the semi-
local convergence analysis one derives convergence criteria from the information
around an initial point whereas in the local analysis one finds estimates of the
radii of convergence balls from the information around a solution. If X = Y
and Q(x) = F (x) + x, then the solution x∗ of equation (1.1) is very important
in fixed point theory.
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We study the convergence of the secant-type method

(1.2) xn+1 = xn −A−1
n F (xn), An = δF (xn, yn) for each n = 1, 2, . . . ,

where x−1, x0 are initial points, yn = θnxn + (1 − θn)xn−1, θn ∈ R. Here
An ∈ L(X ,Y), x, y ∈ D is a consistent approximation of the Fréchet-derivative
of F . (See page 182 of [14] or the second estimate in condition (D4) of Definition
3.1.) L(X ,Y) stands for the space of bounded linear operators from X to Y.
Many iterative methods are special cases of (1.2). Indeed, if θn = 1, then we
obtain Newton’s method

(1.3) xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, . . . ;

if θn = 0, we obtain the secant method

(1.4) xn+1 = xn − δF (xn, xn−1)−1F (xn) for each n = 0, 1, 2, . . . ;

if θn = 2, we obtain the Kurchatov method

(1.5) xn+1 = xn − δF (xn, 2xn − xn−1)−1F (xn) for each n = 0, 1, 2, . . . .

Other choices of θn are also possible [1, 2, 5, 7, 10, 11, 13, 14, 20, 21]. There
is a plethora of sufficient convergence criteria for special cases of secant-type
methods (1.3)-(1.5) under Lipschitz-type conditions (1.2) (see [1–11,13–21] and
the references there in). Therefore, it is important to study the convergence of
the secant-type method in a unified way. It is interesting to notice that although
we use very general majorizing sequences for {xn} our technique leads in the
semilocal case to: weaker sufficient convergence criteria; more precise estimates
on the distances ‖xn − xn−1‖, ‖xn − x∗‖ and an at least as precise information
on the location of the solution x∗ in many interesting special cases such as
Newton’s method or the secant method (see Remark 3.3 and the Examples).
Moreover, in the local case: a larger radius of convergence and more precise
error estimates than in earlier studies such as [7–9, 11, 13–21] are obtained in
this study (see Remark 4.2 and the Examples).

The paper is organized as follows. In Section 2 we study the convergence of
the majorizing sequences for {xn}. Section 3 contains the semilocal and Section
4 the local convergence analysis for {xn}. The numerical examples are given in
the concluding Section 5. In particular, in the local case we present an example
where the radius of convergence is larger than the one given by Rheinboldt
[17] and Traub [19] for Newton’s method. Moreover, in the semilocal case we
provide an example involving a nonlinear integral equation of Chandrasekhar
type [6] appearing in radiative transfer as well as an example involving a two
point boundary value problem.

2. Majorizing sequences for the secant-type method

In this section, we shall first study some scalar sequences which are related
to the secant-type method.
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Let there be parameters c ≥ 0, ν ≥ 0, λ ≥ 0, µ ≥ 1, l0 > 0 and l > 0 with
l0 ≤ l. Define the scalar sequence {αn} by

(2.1)















α−1 = 0, α0 = c, α1 = c + ν

αn+2 = αn+1 +
l (αn+1 − αn + λ(αn − αn−1)) (αn+1 − αn)

1 − l0 [µ(αn+1 − c) + λ(αn − c) + c]
for each n = 0, 1, 2, . . . .

Special cases of the sequence {αn} have been used as majorizing sequences for
secant-type method by several authors. For example: Case 1 (secant method)
l0 = l, λ = 1 and µ = 1 has been studied in [5, 7, 10, 11, 13, 14, 18, 20] and for
l0 ≤ l in [2, 3]. Case 2 (Newton’s method) l0 = l, λ = 0, c = 0 and µ = 2
has been studied in [1, 7–9, 11, 13, 14, 16, 17, 19–21] and for l0 ≤ l in [2–4]. In
the present paper we shall study the convergence of sequence {αn} by first
simplifying it. Indeed, the purpose of the following transformations is to study
the sequence (2.1) after using easier to study sequences defined by (2.3), (2.6)
and (2.8). Let

(2.2) L0 =
l0

1 + (µ + λ− 1)l0c
and L =

l

1 + (µ + λ− 1)l0c
.

Using (2.1) and (2.2), sequence {αn} can be written as

(2.3)















α−1 = 0, α0 = c, α1 = c + ν

αn+2 = αn+1 +
L (αn+1 − αn + λ(αn − αn−1)) (αn+1 − αn)

1 − L0(µαn+1 + λαn)
for each n = 0, 1, 2, . . . .

Moreover, let

(2.4) L = bL0 for some b ≥ 1

and

(2.5) βn = L0αn.

Then, we can define sequence {βn} by

(2.6)















β−1 = 0, β0 = L0c, β1 = L0(c + ν)

βn+2 = βn+1 +
b (βn+1 − βn + λ(βn − βn−1)) (βn+1 − βn)

1 − (µβn+1 + λβn)
for each n = 0, 1, 2, . . . .

Furthermore, let

(2.7) γn =
1

µ + λ
− βn for each n = 0, 1, 2, . . . .
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Then, sequence {γn} is defined by

(2.8)















γ−1 = 1
µ+λ

, γ0 = 1
µ+λ

− L0c, γ1 = 1
µ+λ

− L0(c + ν)

γn+2 = γn+1 −
b (γn+1 − γn + λ(γn − γn−1)) (γn+1 − γn)

µγn+1 + λγn
for each n = 0, 1, 2, . . . .

Finally, let

(2.9) δn = 1 − γn
γn−1

for each n = 0, 1, 2, . . . .

Then, we define the sequence {δn} by

(2.10)















δ0 = 1 − γ0

γ
−1

, δ1 = 1 − γ1

γ0

δn+2 =
bδn+1 (λδn + (1 − δn)δn+1)

(1 − δn)(1 − δn+1) (µ(1 − δn+1) + λ)
for each n = 0, 1, 2, . . . .

It is convenient for the study of the convergence of the sequence {αn} to define
polynomial p by

(2.11) p(t) = µt3 − (λ + 3µ + b)t2 + (2λ + 3µ + b(λ + 1))t− (µ + λ).

We have that p(0) = −(µ + λ) < 0 and p(1) = bλ > 0 for λ > 0. It follows
from the intermediate value theorem that p has roots in (0, 1). Denote the
smallest root by δ. If λ = 0, then p(t) = (t − 1)(µt2 − (2µ + b)t + µ). Hence,

we can choose the smallest root of p given by
2µ+b−

√
b2+4µb

2µ ∈ (0, 1) to be δ

in this case. Note that in particular for Newton’s method and secant method,
respectively, we have that

p(t) = (t− 1)(2t2 − (b + 4)t + 2)

and

p(t) = (t− 2)(t2 − (b + 2)t + 1).

Hence, we obtain, respectively that

(2.12) δ =
4

b + 4 +
√
b2 + 8b

and

(2.13) δ =
2

b + 2 +
√
b2 + 4b

.

Notice also that

(2.14) p(t) ≤ 0 for each t ∈ (−∞, δ].

Next, we study the convergence of these sequences starting from {δn}.
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Lemma 2.1. Let δ1 > 0, δ2 > 0 and b ≥ 1 be given parameters. Suppose that

(2.15) 0 < δ2 ≤ δ1 ≤ δ,

where δ was defined in (2.11). Let {δn} be the scalar sequence defined by (2.10).
Then, the following assertions hold:

(A1) If

(2.16) δ1 = δ2,

then

(2.17) δn = δ for each n = 1, 2, 3, . . . .

(A2) If

(2.18) 0 < δ2 < δ1 < δ,

then sequence {δn} is decreasing and converges to 0.

Proof. It follows from (2.10) and δ2 ≤ δ1 that δ3 > 0. We shall show that

(2.19) δ3 ≤ δ2.

In view of (2.10) for n = 1, it suffices to show that

(2.20) p1(δ2) = µ(1−δ1)δ
2
2−(1−δ1)(2µ+λ+b)δ2−(µ+(1+b)λ)δ1+µ+λ ≥ 0.

The discriminant ∆ of the quadratic polynomial p1 is given by

(2.21) ∆ = (1 − δ1)
[

(1 − δ1)(λ2 + 2(2µ + λ)b + b2) + 4µλbδ1
]

> 0.

Hence, p1 has two distinct roots δs and δl with δs < δl. Polynomial p1 is
quadratic with respect to δ2 and the leading coefficient (µ(1 − δ1)) is positive.
Therefore, we have that

p1(t) ≥ 0 for each t ∈ (−∞, δs] ∪ [δl,+∞)

and
p1(t) ≤ 0 for each t ∈ [δs, δl].

Then, (2.20) shall be true, if

(2.22) δ2 ≤ δs.

By hypothesis (2.15) we have δ1 ≤ δ0. Then by (2.14) we get that p(δ1) ≤ 0 ⇒
δ1 ≤ δs ⇒(2.22), since δ2 ≤ δ1 by hypothesis (2.15). Hence, we showed (2.19).
Therefore, relation

(2.23) 0 < δk+1 < δk,

holds for k = 2. Then, we must show that

(2.24) 0 < δk+2 < δk+1.

It follow from (2.10), δk < 1 and δk+1 < 1 that δk+2 > 0. Then, in view of
(2.10) the right hand side of (2.24) is true, if

(2.25)
bδk+1 [λδk + (1 − δk)δk+1]

(1 − δk)(1 − δk+1) [λ + µ(1 − δk+1)]
≤ δk+1
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or

(2.26) p(δk) ≤ 0,

which is true by (2.14) since δk ≤ δ1 ≤ δ. The induction for (2.23) is complete.
If δ1 = δ2 = δ, then it follows from (2.10) for n = 1 that δ3 = δ and δn = δ for
n = 4, 5, . . ., which shows (2.17). If δ2 < δ1, the sequence {δn} is decreasing,
bounded below by 0 and as such it converges to its unique largest lower bound
denoted by γ. We then have from (2.10) that

(2.27) γ =
bγ [λγ + (1 − γ)γ]

(1 − γ)2 [λ + µ(1 − γ)]
⇒ γ = δ or γ = 0.

But γ ≤ δ1 ≤ δ. Hence, we conclude that γ = 0. �

Next, we present three results for the convergence of sequences {αn}, {βn}
and {γn} under conditions that are not all the same with the ones in Lemma
2.1 (see e.g. (2.28)).

Lemma 2.2. Suppose that the hypothesis (2.18) is satisfied. Then the sequence

{γn} is decreasingly convergent and sequences {αn} and {βn} are increasingly

convergent. Moreover, the following estimate holds:

(2.28) l0c < 1.

Proof. Using (2.2) and (2.9) we get that

γn = (1 − δn)γn−1 = · · · = (1 − δn) · · · (1 − δ1)γ0 = (1 − δn) · · · (1 − δ1)γ0 > 0.

In view of (2.18) we have in turn that

δ1 > 0 ⇒ 1 − γ1
γ0

> 0

⇒ γ0 =
1 − (µ + λ)L0c

µ + λ
> 0

⇒ γ0 =
1 − l0c

(µ + λ)[1 + (µ + λ− 1)l0c]
> 0

⇒ (2.28)

and by the preceding equation we deduce that γn > 0 for each n = 1, 2, . . . and

γn < γn−1 for each n = 1, 2, . . . ,

since δn < 1. Hence, sequence {γn} converges to its unique largest lower bound
denoted by γ∗. We also have that βn = 1

µ+λ
− γn < 1

µ+λ
. Thus, the sequence

{βn} is increasing, bounded from above by 1
µ+λ

and as such it converges to its

unique least upper bound denoted by β∗. Then, in view of (2.5) sequence {αn}
is also increasing, bounded from above by

L
−1

0

µ+λ
and such it also converges to

its unique least upper bound denoted by α∗. �
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Lemma 2.3. Suppose that (2.15) and (2.16) are satisfied. Then the following

assertions hold for each n = 1, 2, . . .

δn = δ,

γn = (1 − δ)nγ0, γ∗ = lim
n→∞

γn = 0,

βn =
1

µ + λ
− (1 − δ)nγ0, β∗ = lim

n→∞
βn =

1

µ + λ

and

αn =
1

L0

[

1

µ + λ
− (1 − δ)nγ0

]

, α∗ = lim
n→∞

αn =
1

L0(µ + λ)
.

Corollary 2.4. Suppose that the hypotheses of Lemma 2.1 and Lemma 2.2

hold. Then the sequence {αn} defined in (2.1) is nondecreasing and converges

to

α∗ = β∗ 1 + (µ + λ− 1)l0c

l0
.

Next, we present lower and upper bounds on the limit point α∗.

Lemma 2.5. Suppose that the condition (2.18) is satisfied. Then the following

assertion holds

(2.29) b11 ≤ α∗ ≤ b12,

where

b11 =
1 + (µ + λ− 1)l0c

l0

[

1

µ + λ
− exp

(

−2

(

δ1
2 − δ1

+
δ2

2 − δ2

))]

,

(2.30) b12 =
1 + (µ + λ− 1)l0c

l0

[

1

µ + λ
− exp(δ∗)

]

,

δ∗ = −
[

1

1 − δ1

(

δ1 +
δ2

1 − r

)

+ ln

(

(µ + λ)(1 − (µ + λ− 1)l0c)

1 − l0c

)]

and

r = b
λδ1 + δ2(1 − δ1)

(1 − δ1)(1 − δ2)(λ + µ(1 − δ2))
.

Proof. Using (2.18) and (2.28) we have that 0 < δ3 < δ2 < δ1. Let us assume
that 0 < δk+1 < δk < · · · < δ1. Then, it follows from the induction hypotheses
and (2.30) that

δk+2 = δk+1b
δk + δk+1(1 − δk)

(1 − δk)(1 − δk+1)(2 − δk+1)

< rδk+1 < r2δk ≤ · · · ≤ rk−1δ3 ≤ rkδ2.

We have that

γ∗ = lim
n→∞

γn =

∞
∏

i=1

(1 − δn)γ0.
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This is equivalent to

ln

(

1

γ∗

)

=

∞
∑

n=1

ln

(

1

1 − δn

)

+ ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

,

recalling that γ0 = (1 − l0c)/((µ + λ)(1 + (µ + λ − 1)l0c)). We shall use the
following bounds for ln t, t > 1:

2

(

t− 1

t + 1

)

≤ ln t ≤ t2 − 1

2t
.

First, we shall find an upper bound for ln(1/γ∗). We have that

ln(1/γ∗)

≤
∞
∑

n=1

δn(2 − δn)

2(1 − δn)
+ ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

≤ 1

1 − δ1

∞
∑

n=1

δn + ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

≤ 1

1 − δ1
(δ1 + δ2 + δ3 + · · · ) + ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

≤ 1

1 − δ1
(δ1 + δ2 + rδ2 + · · · + rnδ2 + · · · )+ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

≤ 1

1 − δ1

(

δ1 + δ2(r + r2 + · · · + rn + · · ·
)

+ ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

≤ 1

1 − δ1

(

δ1 +
δ2

1 − r

)

+ ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

= −δ∗.

As β∗ = 1/(µ+λ)− γ∗ and α∗ = L−1
0 β∗, we obtain the upper bound in (2.29).

Moreover, in order to obtain the lower bound for ln(1/γ∗), we have that

ln(1/γ∗) ≥ 2

∞
∑

n=1

δn
2 − δn

> 2

(

δ1
2 − δ1

+
δ2

2 − δ2

)

,

which implies the lower bound in (2.29). �

From now on we shall denote by (C1) the hypothesis of Lemma 2.1 and
Lemma 2.2.

Remark 2.6. (a) Let us introduce the notation

cN = αN−1 − αN−2, νN = αN − αN−1

for some integer N ≥ 1. Notice that c1 = α0 − α−1 = c and ν1 = α1 − α0 = ν.
The results in the preceding lemmas can be weakened even further as follows.
Consider the convergence criteria (CN

∗ ) for N > 1: (C1) with c, ν replaced by
cN , νN , respectively

α−1 < α0 < α1 < · · · < αN < αN+1,
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l0
[

µ(αN+1 − cN ) + λ(αN − cN ) + cN
]

< 1.

Then, the preceding results hold with c, ν, δ1, δ2, b
1
1, b

1
2 replaced, respectively,

by cN , νN , δN , δN+1, bN1 , bN2 .
(b) Notice that if

(2.31) l0 [µ(αn+1 − c) + λ(αn − c) + c] < 1 holds for each n = 0, 1, 2, . . . ,

then, it follows from (2.1) that sequence {αn} is increasing, bounded from

above by 1+(µ+λ−1)l0c
l0(µ+λ) and as such it converges to its unique least upper bound

α∗. Criterion (2.31) is the weakest of all the preceding convergence criteria for
sequence {αn}. Clearly all the preceding criteria imply (2.31). Finally, define
the criteria for N ≥ 1

(2.32) (IN ) =

{

(CN
∗ )

(2.31) if criteria (CN
∗ ) fail.

Lemma 2.7. Suppose that the conditions (2.18) and (2.28) hold. Then the

following assertion holds

(2.33) b11 ≤ α∗ ≤ b12,

where

b11 =
1 + (µ + λ− 1)l0c

l0

[

1

µ + λ
− exp

(

−2

(

δ1
2 − δ1

+
δ2

2 − δ2

))]

,

(2.34) b12 =
1 + (µ + λ− 1)l0c

l0

[

1

µ + λ
− exp(δ∗)

]

,

δ∗ = −
[

1

1 − δ1

(

δ1 +
δ2

1 − r

)

+ ln

(

(µ + λ)(1 − (µ + λ− 1)l0c)

1 − l0c

)]

and

r = b
λδ1 + δ2(1 − δ1)

(1 − δ1)(1 − δ2)(λ + µ(1 − δ2))
.

Proof. Using (2.18) and (2.28) we have that 0 < δ3 < δ2 < δ1. Let us assume
that 0 < δk+1 < δk < · · · < δ1. Then, it follows from the induction hypotheses
and (2.34) that

δk+2 = δk+1b
δk + δk+1(1 − δk)

(1 − δk)(1 − δk+1)(2 − δk+1)

< rδk+1 < r2δk ≤ · · · ≤ rk−1δ3 ≤ rkδ2.

We have that

γ∗ = lim
n→∞

γn =

∞
∏

i=1

(1 − δn)γ0.

This is equivalent to

ln

(

1

γ∗

)

=

∞
∑

n=1

ln

(

1

1 − δn

)

+ ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

,
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recalling that γ0 = (1 − l0c)/((µ + λ)(1 + (µ + λ − 1)l0c)). We shall use the
following bounds for ln t, t > 1:

2

(

t− 1

t + 1

)

≤ ln t ≤ t2 − 1

2t
.

First, we shall find an upper bound for ln(1/γ∗). We have that

ln(1/γ∗)

≤
∞
∑

n=1

δn(2 − δn)

2(1 − δn)
+ ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

≤ 1

1 − δ1

∞
∑

n=1

δn + ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

≤ 1

1 − δ1
(δ1 + δ2 + δ3 + · · · ) + ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

≤ 1

1 − δ1
(δ1 + δ2 + rδ2 + · · · + rnδ2 + · · · )+ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

≤ 1

1 − δ1

(

δ1 + δ2(r + r2 + · · · + rn + · · ·
)

+ ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

≤ 1

1 − δ1

(

δ1 +
δ2

1 − r

)

+ ln

(

(µ + λ)(1 + (µ + λ− 1)l0c)

1 − l0c

)

= −δ∗.

As β∗ = 1/(µ+λ)− γ∗ and α∗ = L−1
0 β∗, we obtain the upper bound in (2.34).

Moreover, in order to obtain the lower bound for ln(1/γ∗), we have that

ln(1/γ∗) ≥ 2

∞
∑

n=1

δn
2 − δn

> 2

(

δ1
2 − δ1

+
δ2

2 − δ2

)

,

which implies the lower bound in (2.34). �

3. Semilocal convergence of the secant-type method

In this section, we first present the semilocal convergence of the secant-type
method using {αn} (defined in (2.1)) as a majorizing sequence. Let U(x,R)
stand for an open ball centered at x ∈ X with radius R > 0. Let U(x,R)
denote its closure. We shall study the secant method for triplets (F , x−1, x0)
belonging to the class K = K(l0, l, ν, c, λ, µ) defined as follows.

Definition 3.1. Let l0, l, ν, c, λ, µ be constants satisfying the hypotheses (IN )
for some fixed integer N ≥ 1. A triplet (F , x−1, x0) belongs to the class K =
K(l0, l, ν, c, λ, µ) if:

(D1) F is a nonlinear operator defined on a convex subset D of a Banach
space X with values in a Banach space Y.
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(D2) x−1 and x0 are two points belonging to the interior D0 of D and
satisfying the inequality

‖x0 − x−1‖ ≤ c.

(D3) There exist a sequence {θn} of real numbers and λ, µ such that |1−θn| ≤
λ and 1 + |θn| ≤ µ for each n = 0, 1, 2, . . ..

(D4) F is Fréchet-differentiable on D0 and there exists an operator δF :
D0×D0 →  L(X,Y ) such that A−1 = δF(x0, y0)

−1 ∈  L(Y,X) for all x, y, z ∈ D
then, the following hold

‖A−1F(x0)‖ ≤ ν,

‖A−1(δF(x, y) −F ′(z))‖ ≤ l(‖x− z‖ + ‖y − z‖)

and

‖A−1(δF(x, y) −F ′(x0))‖ ≤ l0(‖x− x0‖ + ‖y − x0‖),

where y0 = θ0x0 + (1 − θ0)x−1.
(D5)

U(x0, α
∗
0) ⊆ Dc = {x ∈ D : F is continuous at x} ⊆ D,

where α∗
0 = (µ + λ− 1)(α∗ − c) and α∗ is given in Lemma 2.3.

Next, we present the semilocal convergence result for the secant method.

Theorem 3.2. If (F , x−1, x0) ∈ K(l0, l, ν, c, λ, µ), then the sequence {xn} (n ≥
−1) generated by the secant-type method is well defined, remains in U(x0, α

∗
0)

for each n = 0, 1, 2, . . . and converges to a unique solution x∗ ∈ U(x0, α
∗ − c)

of (1.1). Moreover, the following assertions hold for each n = 0, 1, 2, . . .

(3.1) ‖xn − xn−1‖ ≤ αn − αn−1

and

(3.2) ‖x∗ − xn‖ ≤ α∗ − αn,

where sequence {αn} (n ≥ 0) is given in (2.1). Furthermore, if there exists R
such that

(3.3) U(x0, R) ⊆ D, R ≥ α∗−c and l0(α∗−c+R)+‖A−1(F−1(x0)−A)‖ < 1,

then the solution x∗ is unique in U(x0, R).

Proof. First, we show that M = δF(xk+1, yk+1) is invertible for xk+1, yk+1 ∈
U(x0, α

∗
0). By (D2), (D3) and (D4), we have that

‖yk+1 − x0‖ ≤ ‖θk(xk+1 − x0) + (1 − θk+1)(xk − x0)‖
≤ |θk+1|‖xk+1 − x0‖ + |1 − θk+1|‖xk − x0‖
≤ (µ− 1)(α∗ − c) + λ(α∗ − c) = α∗

0

and

‖I −A−1M‖(3.4)

= ‖A−1(M−A)‖
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≤ ‖A−1(M−F ′(x0))‖ + ‖A−1(F ′(x0) −A)‖
≤ l0(‖xk+1 − x0‖ + ‖yk+1 − x0‖ + ‖x0 − x−1‖)

≤ l0(‖xk+1 − x0‖ + |θk+1|‖xk+1 − x0‖ + |1 + θk+1|‖xk+1 − x0‖ + c)

≤ l0(µ(αk+1 − c) + λ(αk+1 − c) + c) < 1.

Using the Banach lemma on invertible operators [8], [10], [14], [17], [18] and
(3.4), we deduce that M is invertible and

(3.5) ‖M−1A‖ ≤ (1 − l0(µ(αk+1 − c) + λ(αk+1 − c) + c))−1.

By (D4), we have

(3.6) ‖A−1(F ′(u) −F ′(v))‖ ≤ 2l‖u− v‖, u, v ∈ D0.

We can write the identity

(3.7) F ′(x) −F ′(y) =

∫ 1

0

F ′(y + t(x− y))dt(x− y).

Then, for all x, y, u, v ∈ D0, we obtain

(3.8) ‖A−1(F(x) −F(y) −F ′(u)(x− y))‖ ≤ l(‖x− u‖ + ‖y − u‖)‖x− y‖
and
(3.9)
‖A−1(F(x)−F(y)− δF(u, v)(x− y))‖ ≤ l(‖x− v‖+ ‖y− v‖+ ‖u− v‖)‖x− y‖.
By a continuity argument (3.6)-(3.9) remain valid if x and/or y belong to Dc.
Next, we show (3.1). If (3.1) holds for all n ≤ k and if {xn} (n ≥ 0) is well
defined for n = 0, 1, 2, . . . , k, then

(3.10) ‖xn − x0‖ ≤ αn − α0 < α∗ − α0, n ≤ k.

That is (1.2) is well defined for n = k+ 1. For n = −1 and n = 0, (3.1) reduces
to ‖x−1−x0‖ ≤ c and ‖x0−x1‖ ≤ ν. Suppose (3.1) holds for n = −1, 0, 1, . . . , k
(k ≥ 0). By (3.5), (3.9), and

(3.11) F(xk+1) = F(xk+1) −F(xk) −Ak(xk+1xk)

we obtain in turn the following estimates

‖A−1F(xk+1)‖
(3.12)

= ‖A−1(δF(xk+1, xk) −Ak)(xk+1 − xk)‖
≤

(

‖A−1(δF(xk+1, xk) −F ′(xk))‖ + ‖A−1(F ′(xk) −Ak)‖
)

‖(xk+1 − xk)‖
≤ l [‖(xk+1 − xk)‖ + ‖(xk − yk)‖] ‖(xk+1 − xk)‖
≤ l(αk+1 − αk + |1 − θk|(αk − αk−1)(αk+1 − αk))

and

‖xk+2 − xk+1‖
= ‖A−1

k+1F(xk+1)‖
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≤ ‖A−1
k+1A‖‖A−1F(xk+1)‖

≤ l(αk+1 − αk + |1 − θk|(αk − αk−1))

1 − l0 [(1 + |θk+1|)(αk+1 − c) + |1 − θk+1|(αk − c) + c]
(αk+1 − αk)

≤ αk+2 − αk+1.

The induction for (3.1) is complete. It follows from (3.1) and Lemma 2.1
that {xn} (n ≥ −1) is a complete sequence in a Banach space X and as such
it converges to some x∗ ∈ U(x0, α

∗ − c) (since U(x0, α
∗ − c) is a closed set).

By letting k → ∞ in (3.12), we obtain F(x∗) = 0. Moreover, estimate (3.2)
follows from (3.1) by using standard majoration techniques [7, 11, 13]. Finally,
to show the uniqueness in U(x0, R), let y∗ ∈ U(x0, R) be a solution (1.1). Set

T =

∫ 1

0

F ′(y∗ + t(y∗ − x∗))dt.

Using (D4) and (3.3) we get in turn that

‖A−1(A− T )‖ = l0(‖y∗ − x0‖ + ‖x∗ − x0‖) + ‖A−1(F ′(x0) −A)‖(3.13)

≤ l0 [(α∗ − α0) + R] + ‖A−1(F ′(x0) −A)‖ < 1.

If follows from (3.13) and the Banach lemma on invertible operators that T −1

exists. Using the identity:

(3.14) F(x∗) −F ′(y∗) = T (x∗ − y∗),

we deduce that x∗ = y∗. �

Remark 3.3. If follows from the proof of Theorem 3.2 that sequences {rn},
{sn} defined by

(3.15)















r−1 = 0, r0 = c, r1 = c + ν

r2 = r1 + l0(r1−r0+|1−θ0|(r0−r
−1))(r1−r0)

1−l0((1+|θ1|)(r1−r0))

rn+2 = rn+1 + l(rn+1−rn+|1−θn|(rn−rn−1))(rn+1−rn)
1−l0[(1+|θn+1|)(rn+1−r0)+(|1−θn+1|)(rn−r0)+c]

and

(3.16)















s−1 = 0, s0 = c, s1 = c + ν

s2 = s1 + l0(s1−s0+λ(s0−s
−1))(s1−s0)

1−l0(1+|θ1|)(s1−s0)

sn+2 = sn+1 + l(sn+1−sn+λ(sn−sn−1))(sn+1−sn)
1−l0(µ(sn+1−s0)+λ(sn−s0))+c

respectively are more precise majorizing sequences for {xn}. Clearly, these
sequences also converge under the (IN ) hypotheses.

A simple inductive argument shows that if l0 < l for each n = 2, 3, . . .

(3.17) rn < sn < αn

(3.18) rn+1 − rn < sn+1 − sn < αn+1 − αn
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and

(3.19) r∗ = lim
n→∞

rn ≤ s∗ = lim
n→∞

sn ≤ α∗ = lim
n→∞

αn.

In practice, one must choose {θn} so that the best error bounds are obtained
(see also Section 4). Note also that sequences {rn} or {sn} may converge under
even weaker hypotheses. The sufficient convergence criterion (2.15) determines
the smallness of c and r. This criterion can be solved for c and r (see for
example the h criteria or (3.29) that follow). Indeed, let us demonstrate the
advantages in two popular cases:

Case 1: Newton’s method (i.e., if c = 0, λ = 0, µ = 1). Then it can
easily be seen that {sn} (and consequently {rn}) converges provided that (see
also [4])

(3.20) h2 = l2ν ≤ 1,

where

(3.21) l2 =
1

4

(

4κ0 +
√
κ0κ +

√

κ0κ + 8κ2
0

)

,

whereas sequence {xn} converges, if

(3.22) h1 = l1ν ≤ 1

where

(3.23) l1 =
1

4

(

4κ0 + κ +
√

κ2
0 + 8κκ0

)

.

In the case κ0 = κ (i.e., b = 1), we obtain the famous for its simplicity and
clarity Kantorovich sufficient convergent criteria [2] given by

(3.24) h = 2κν ≤ 1.

Notice however that

(3.25) h ≤ 1 ⇒ h1 ≤ 1 ⇒ h2 ≤ 1

but not necessarily vice versa unless if κ0 = κ. Moreover, we have that

(3.26)
h1

h
→ 1

4
,
h1

h
→ 0,

h2

h1
→ 0 as

κ0

κ
→ 0.

Case 2: Secant method (i.e., for θn = 0). Schmidt [18], Potra-Ptáck [14],
Dennis [7], Ezquerro el at. [10], used the majorizing sequence {αn} for θn ∈ [0, 1]
and l0 = l. That is, they used the sequence {tn} given by

(3.27)

{

t−1 = 0, t0 = c, t1 = c + ν

tn+2 = tn+1 + l(tn+1−tn−1)(tn+1−tn)
1−l(tn−tn+1+c)
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whereas our sequence {αn} reduces to

(3.28)

{

α−1 = 0, α0 = c, α1 = c + ν

αn+2 = αn+1 + l(αn+1−αn−1)(αn+1−αn)
1−l0(αn+1−αn+c) .

Then, in case l0 < l our sequence is more precise (see also (3.17)-(3.19)).
Notice also that in the preceding references the sufficient convergence criterion
associated to {tn} is given by

(3.29) lc + 2
√
lν ≤ 1.

Our sufficient convergence criteria can be also weaker in this case (see also the
numerical examples). It is worth nothing that if c = 0 (3.29) reduces to (3.24)
(since κ = 2l).

Similar observations can be made for other choices of parameters.

4. Local convergence of the secant-type method

In this section, we present the local convergence analysis of the secant-type
method. Let x∗ ∈ X be such that F(x∗) = 0 and F ′(x∗)−1 ∈  L(Y,X ). Using
the identities

xn+1 − x∗ = (A−1
n F ′(x∗))F ′(x∗)−1[(δF(xn, yn) − F ′(xn))

+ (F ′(xn) − δF(xn, x
∗))](xn − x∗),

yn − xn = (1 − θn)(xn−1 − xn),

and

yn − x∗ = θn(xn − x∗) + (1 − θn)(xn−1 − x∗)

we easily arrive at:

Theorem 4.1. Suppose that (D1) and (D3) hold. Moreover, suppose that there

exist x∗ ∈ D, K0 > 0, K > 0 such that F(x∗) = 0, F ′(x∗)−1 ∈  L(Y,X ),

‖F ′(x∗)−1(δF(x, y) − F ′(x∗))‖ ≤ K0(‖x− x∗‖ + ‖y − x∗‖),

‖F ′(x∗)−1(δF(x, y) − F ′(z))‖ ≤ K(‖x− z‖ + ‖y − z‖) for each x, y, z ∈ D,

and

U(x∗, R∗
0) ⊆ D,

where

R∗ =
1

(2λ + 1)K + (λ + µ)K0

and

R∗
0 = (µ + λ− 1)R∗.

Then the sequence {xn} generated by the secant-type method is well defined,

remains in U(x∗, R∗) for each n = −1, 0, 1, 2, . . . and converges to x∗ provided

that x−1, x0 ∈ U(x∗, R∗). Moreover, the following estimates hold

‖xn+1 − x∗‖ ≤ ên‖xn − x∗‖ ≤ en‖xn − x∗‖ ≤ en‖xn − x∗‖,
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where

ên =
K(‖xn − x∗‖ + |1 − θn|‖xn−1 − xn‖

1 −K0([(1 + |θn|)‖xn − x∗‖ + |1 − θn|‖xn−1 − x∗‖]
,

en =
K(‖xn − x∗‖ + λ‖xn−1 − xn‖

1 −K0([(µ‖xn − x∗‖ + λ‖xn−1 − x∗‖]
,

en =
K(2λ + 1)R∗

1 −K0(λ + µ)R∗

and

K =

{

κ0, if n = 0,
κ, if n > 0.

Remark 4.2. Comments similar to the one given in Remark 3.3 can also follow
for this case. For example, notice again that in the case of Newton’s method

R∗ =
2

2κ0 + κ
,

whereas the convergence ball given independently by Rheinboldt [17] and Traub
[19] is given by

R1
∗ =

2

3κ
.

Note that

R1
∗ ≤ R∗.

Strict inequality holds in the preceding inequality if κ0 < κ. Moreover, the
error bounds are tighter, if κ0 < κ. Finally, note that κ0

κ
can be arbitrarily

small and
R∗

R1
∗

→ 3 as
κ0

κ
→ 0.

5. Numerical examples

Related to the semilocal case we present the following examples.

Example 5.1. Let X = Y = R and let consider the following function

(5.1) x3 − 0.49 = 0,

and we are going to apply the secant method (λ = 1, µ = 1, θn = 0) to find
the solution of (5.1). We take the starting points x−1 = 1.14216 · · · , x0 = 1
and we consider the domain Ω = B(x0, 2). In this case, we obtain

(5.2) ν = 0.147967 · · · ,

(5.3) ν = 0.14216 · · · ,

(5.4) l = 2.61119 · · · ,

(5.5) l0 = 1.74079 · · · .
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Notice that hypothesis lc + 2
√
lν ≤ 1 is not satisfied, but hypotheses of The-

orem 3.2 are satisfied, so the convergence of secant method starting form
x0 ∈ B(x0, 2) converges to the solution of (5.1).

Example 5.2. Let X = Y = C[0, 1], equipped with the max-norm. Consider
the following nonlinear boundary value problem

{

u′′ = −u3 − γ u2

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

(5.6) u(s) = s +

∫ 1

0

Q(s, t) (u3(t) + γ u2(t)) dt,

where Q is the Green’s function:

Q(s, t) =

{

t (1 − s), t ≤ s
s (1 − t), s < t.

We observe that

max
0≤s≤1

∫ 1

0

|Q(s, t)| dt =
1

8
.

Then the problem (5.6) is in the form (1.1), where F : D −→ Y is defined as

[F (x)] (s) = x(s) − s−
∫ 1

0

Q(s, t) (x3(t) + γ x2(t)) dt.

We define the divided difference by δF (x, y) =
∫ 1

0 F
′(y + t(x− y))dt. Set

u0(s) = s and D = U(u0, R0). It is easy to verify that U(u0, R0) ⊂ U(0, R0+1)
since ‖ u0 ‖= 1. If 2 γ < 5, the operator F ′ satisfies conditions of Theorem
3.2, with

θn = 0, ν =
1 + γ

(1 − l0c)(5 − 2 γ)
, l =

γ + 6 R0 + 3

(1 − l0c)(5 − 2 γ)
, l0 =

2 γ + 3 R0 + 6

(1 − l0c)(5 − 2 γ)
.

Since

‖δF (x0, x−1)−1F (x0)‖ ≤ ‖δF (x0, x−1)−1F ′(x0)‖‖F ′(x0)F (x0)‖

≤ 1

(1 − l0c)

1 + γ

5 − 2γ
.

Note that l0 < l. Therefore, the hypothesis of Kantorovich may not be satisfied,
but conditions of Theorem 3.2 may be satisfied.

Finally, for the local case we study the following one.

Example 5.3. Let X = Y = R
3, D = U(0, 1), x∗ = (0, 0, 0) and define

function F on D by

(5.7) F (x, y, z) = (ex − 1, y2 + y, z).
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We have that for u = (x, y, z)

(5.8) F ′(u) =





ex 0 0
0 2y + 1 0
0 0 1



 .

Using the norm of the maximum of the rows and (5.7)–(5.8) we see that since
F ′(x∗) = diag{1, 1, 1}, we can define parameters for Newton’s method by

(5.9) K = e/2,

(5.10) K0 = 1,

(5.11) R∗ =
2

e + 4
,

(5.12) R∗
0 = R∗,

since θn = 1, µ = 2, λ = 0. Then the Newton’s method starting form x0 ∈
B(x∗, R∗) converges to a solution of (5.7). Note that using only Lipschitz
condition we obtain the Rheinboldt or Traub ball R∗

TR = 2
3e < R∗.

Example 5.4. In this example we present an application of the previous anal-
ysis to the Chandrasekhar equation:

(5.13) x(s) = 1 +
s

4
x(s)

∫ 1

0

x(t)

s + t
dt, s ∈ [0, 1],

which arises in the theory of radiative transfer [6]; x(s) is the unknown function
which is sought in C[0, 1]. The physical background of this equation is fairly
elaborate. It was developed by Chandraseckhar [6] to solve the problem of
determination of the angular distribution of the radiant flux emerging from a
plane radiation field. This radiation field must be isotropic at a point, that is
the distribution in independent of direction at that point. Explicit definitions
of these terms may be found in the literature [6]. It is considered to be the
prototype of the equation,

x(s) = 1 + λs x(s)

∫ 1

0

ϕ(s)

s + t
x(t) dt, s ∈ [0, 1],

for more general laws of scattering, where ϕ(s) is an even polynomial in s with
∫ 1

0

ϕ(s) ds ≤ 1

2
.

Integral equations of the above form also arise in the other studies [6]. We
determine where a solution is located, along with its region of uniqueness.

Note that solving (3.7) is equivalent to solve F (x) = 0, where F : C[0, 1] →
C[0, 1] and

(5.14) [F (x)](s) = x(s) − 1 − s

4
x(s)

∫ 1

0

x(t)

s + t
dt, s ∈ [0, 1].
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To obtain a numerical solution of (3.7), we first discretize the problem and
approach the integral by a Gauss-Legendre numerical quadrature with eight
nodes,

∫ 1

0

f(t) dt ≈
8

∑

j=1

wjf(tj),

where

t1 = 0.019855072, t2 = 0.101666761, t3 = 0.237233795, t4 = 0.408282679,
t5 = 0.591717321, t6 = 0.762766205, t7 = 0.898333239, t8 = 0.980144928,
w1 = 0.050614268, w2 = 0.111190517, w3 = 0.156853323, w4 = 0.181341892,
w5 = 0.181341892, w6 = 0.156853323, w7 = 0.111190517, w8 = 0.050614268.

Table 1. The comparison results of ‖xn+1−xn‖ for Example
3.3 using various methods.

n ‖xn+1 − xn‖ ‖xn+1 − xn‖ ‖xn+1 − xn‖ ‖xn+1 − xn‖
θn = 0, Newton θn = 1, secant θn = 2, Kurchatov θn = 1/2, midpoint

1 9.49639× 10−6 4.70208 × 10−2 4.33999× 10−1 1.42649 × 10−1

2 8.18823 × 10−12 7.77292 × 10−3 3.28371× 10−2 1.51900 × 10−2

3 5.15077 × 10−24 5.14596 × 10−5 2.33370× 10−3 1.66883 × 10−4

4 1.79066 × 10−48 3.89016 × 10−8 9.32850× 10−6 1.34477 × 10−7

5 1.95051 × 10−97 1.77146× 10−13 2.214411× 10−9 1.03094× 10−12

6 2.12404× 10−195 5.35306× 10−22 1.801201× 10−15 5.63911× 10−21

ρ 2.00032 1.61815 1.61854 1.61817

If we denote xi = x(ti), i = 1, 2, . . . , 8, the equation (3.7) is transformed
into the following nonlinear system:

xi = 1 +
xi

4

8
∑

j=1

aijxj , i = 1, 2, . . . , 8,

where, aij =
tiwj

ti+tj
.

Denote now x = (x1, x2, . . . , x8)T , 1 = (1, 1, . . . , 1)T , A = (aij) and write
the last nonlinear system in the matrix form:

(5.15) x = 1 +
1

4
x⊙ (Ax),

where ⊙ represents the inner product. Set G(x) = x. If we choose x0 =
(1, 1, . . . , 1)T and x−1 = (0, 0, . . . , 0)T . Assume sequence {xn} is generated by
secant-type methods with different choices of θn. Table 1 gives the comparison
results for ‖xn+1 − xn‖ equipped with the max-norm for this example. The
computational order of convergence (COC) is shown in Table 1 for various
methods. Here (COC) is defined in [1], [3] by

ρ ≈ ln

(‖xn+1 − x⋆‖∞
‖xn − x⋆‖∞

)

/ ln

( ‖xn − x⋆‖∞
‖xn−1 − x⋆‖∞

)

, n ∈ N,
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The last line in Table 1 shows the (COC).
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Ángel Alberto Magreñán
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