• Title/Summary/Keyword: Approximate Calculation

Search Result 264, Processing Time 0.022 seconds

A DTC-PWM Control Scheme of PMSM using an Approximated Voltage Function of Voltage Vector (전압벡터의 근사 전압함수를 이용한 PMSM의 DTC-PWM 제어방식)

  • Kwak, YunChang;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.421-428
    • /
    • 2015
  • An advanced direct torque control (DTC) with pulse width modulation (PWM) method is presented in this paper. The duty ratio calculation of the selected voltage vector is based on the voltage functions of the selected voltage vector according to the sector angle. The proposed DTC uses a conventional DTC scheme with six sector divisions and switching rules. However, the winding voltages are supplied by the PWM approach. Furthermore, the duty ratio of the switching voltage vector is determined by the flux, torque error, and motor speed. The base voltage that shall determine the duty ratio can be calculated by approximate voltage functions according to the voltage angle. For the calculation of base voltages, second-order quadratic functions are used to express the output voltage of the selected voltage vector according to voltage angle. The coefficients for the second-order quadratic functions are selected by the voltage vector, which is determined by the switching rules of the DTC. In addition, the voltage functions are calculated by the coefficients and voltage angle between the voltage vector and rotor position. The switching voltages from the calculated duty ratio can supply the proper torque and flux to reduce the ripple and error. The proposed control scheme is verified through practical experimental comparisons.

Economic Generation Allocation with Power Equation Constraints (모선 전력방정식을 제약조건으로 하는 경제적 발전력 연산방법)

  • Eom, Jae-Seon;Kim, Geon-Jung;Lee, Sang-Jung;Choe, Jang-Heum
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.398-402
    • /
    • 2002
  • The ELD computation has been based upon the so-called B-coefficient which uses a quadratic approximation of system loss as a function of generation output. Direct derivation of system loss sensitivity based on the Jacobian-based method was developed in early 1970s', which could eliminate the dependence upon the approximate loss formula. However, both the B-coefficient and the Jacobian-based method require a complicated Procedure for calculating the system loss sensitivity included in the constraints of the optimization problem. In this paper, an ELD formulation in which only the bus power equations are defined as the constraints has been introduced. Derivation of the partial derivatives of the system loss with respect to the generator output and calculation of the penalty factors for individual generators are not required anymore in proposed method. A comprehensive solution procedure including calculation of the Jacobians and Hessians of the formulation has been presented in detail. Proposed ELD formulation has been tested on a sample system and the simulation indicated a satisfactory result.

Combustion Pressure Calculation of Kick Motor using Stain on Cylinder Section of Composite Case (복합재 케이스의 실린더 변형률을 이용한 킥모터 연소 압력 계산)

  • Yi, Moo-Keun;Kil, Kyoung-Sub;Lee, Kyoung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.777-780
    • /
    • 2010
  • A method for the calculation of the combustion pressure of Kick-Motor was proposed, which is based on the circumferential direction strain on the cylinder of Kick-Motor. At first, polynomials which approximate the ratio of strain and Combustion Pressure during Combustion Time was calculated from ground firing tests. Then strain data during flight time was plugged into the polynomials to get Combustion Pressure of the Kick-Motor. Compared with the measured pressure data during flight the converted showed similar trend. Pressure difference between them was about 10psi.

  • PDF

Responsiveness-Enhancing Scheme for ABR Rate Control Algorithms in Wireless ATM Networks (무선 ATM 망에서의 ABR 전송률 제어 알고리즘 응답성 개선 방안)

  • Min, Koo;Choi, Myung-Whan
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.3
    • /
    • pp.370-380
    • /
    • 2000
  • Asynchronous Transfer Model(ATM)에 기반한 광대역 멀티미디어 통신망에서 best effort 형태의 서비스 지원을 위해 Available Bit Rate(ABR) 서비스가 사용되고 있다. 이미 제안된 많은 수의 ABR 전송률제어 알고리즘들은 정확하게 적정전송률을 계산하는 알고리즘(exact fair rate calculation algorithm)과 적정전송률의 근사치를 계산하는 알고리즘(approximate fair rate calculation algorithm)의 두 분류로 크게 구분 될 수 있다. 정확하게 적정전송률을 계산하는 알고리즘은 공정성과 응답성(responsiveness)측면에서 장점을 갖는다. 하지만 무선ATM 환경 하에서는 무선링크의 가용대역폭이 무선채널의 오류특성으로 인해 시변(time-varying)하므로, 정확하게 적정전송률을 계산하는 알고리즘은 무선ATM 환경에 적용되기 어려우며 따라서 적정전송률의 근사치를 계산하는 알고리즘이 대산 사용될 수 있다. 이 경우에 적정전송률의 근사치를 계산하는 알고리즘들의 응답성이 상대적으로 뒤떨어지는 특성으로 인해 가용대역폭이 시변하는 경우 알고리즘 성능의 저하가 발생될 수 있다. 본 논문에서는 적정전송률의 근사치를 계산하는 알고리즘들을 위한 응답성 개선 방안을 제안하고 응답성이 개선된 적정전송률의 근사치를 계산하는 알고리즘의 한 예로 응답성이 개선된 EDMRCA 알고리즘을 제시한다. 모의 실험을 통해 제시하는 알고리즘이 EDMRCA보다 응답성 측면에서 상당히 개선되었음을 보인다.

  • PDF

A new method solving the temperature field of concrete around cooling pipes

  • Zhu, Zhenyang;Qiang, Sheng;Chen, Weimin
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.441-462
    • /
    • 2013
  • When using the conventional finite element method, a great number of grid nodes are necessary to describe the large and uneven temperature gradients in the concrete around cooling pipes when calculating the temperature field of mass concrete with cooling pipes. In this paper, the temperature gradient properties of the concrete around a pipe were studied. A new calculation method was developed based on these properties and an explicit iterative algorithm. With a small number of grid nodes, both the temperature distribution along the cooling pipe and the temperature field of the concrete around the water pipe can be correctly calculated with this new method. In conventional computing models, the cooling pipes are regarded as the third boundary condition when solving a model of concrete with plastic pipes, which is an approximate way. At the same time, the corresponding parameters have to be got by expensive experiments and inversion. But in the proposed method, the boundary condition is described strictly, and thus is more reliable and economical. And numerical examples were used to illustrate that this method is accurate, efficient and applicable to the actual engineering.

Strength Demand Calculation for Retrofitting Unreinforced Masonry Buildings Based on the Displacement Coefficient Method and the Preliminary Seismic Evaluation Procedure (변위계수법 및 약산식 내진성능평가에 기초한 비보강 조적조 건물의 내진보강 요구강도 산정)

  • Seol, Yun Jeong;Park, Ji-Hun;Kwak, Byeong Hun;Kim, Dae Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • Based on the nonlinear static analysis and the approximate seismic evaluation method adopted in "Guidelines for seismic performance evaluation for existing buildings, two methods to calculate strength demand for retrofitting individual structural walls in unreinforced masonry buildings are proposed." The displacement coefficient method to determine displacement demand from nonlinear static analysis results is used for the inverse calculation of overall strength demand required to reduce the displacement demand to a target value meeting the performance objective of the unreinforced masonry building to retrofit. A preliminary seismic evaluation method to screen out vulnerable buildings, of which detailed evaluation is necessary, is utilized to calculate overall strength demand without structural analysis based on the difference between the seismic demand and capacity. A system modification factor is introduced to the preliminary seismic evaluation method to reduce the strength demand considering inelastic deformation. The overall strength demand is distributed to the structural walls to retrofit based on the wall stiffness, including the remaining walls or otherwise. Four detached residential houses are modeled and analyzed using the nonlinear static and preliminary evaluation procedures to examine the proposed method.

Calculation of the Dipole Moments for Transition Metal Complexes by Valence Bond Method (I). Calculation of the Dipole Moments for Octahedral $[M(III)O_3S_3]$ Type Complexes [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) and Os(III)] (원자가 결합법에 의한 전이원소 착물에 대한 쌍극자모멘트의 계산 (제1보). 팔면체 $[M(III)O_3S_3]$ 형태 착물의 쌍극자모멘트의 계산 [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) 및 Os(III)])

  • Sangwoon Ahn;Jeoung Soo Ko
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.198-205
    • /
    • 1979
  • A valence bond method of calculation of the dipole moments for octahedral $(M(III)0_3S_3)$ type complexes are developed, using $d^2sp^3 $hybrid orbitals of the central metal ions and the single basis set orbital of ligands. (M (III) =V (III), Cr (III), Mn (III), Fe (III), Co (III), Ru (III), Rh (III) and OS (III)). In this method the mixing coefficient of the valence basis sets for the central metal ion with the appropriate ligand orbitals is not required to be the same, differently from the molecular orbital method. The valence bond method is much more easier to calculate the dipole moments for octahedral complexes than the approximate molecular orbital method and the calculated results are also in the range of the experimental vaues.

  • PDF

Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge

  • Zhou, Yongjun;Zhao, Yu;Liu, Jiang;Jing, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.343-354
    • /
    • 2021
  • The frequencies formulas of the bridge are of great importance in the design process since these formulas provide insight dynamic characteristics of the structure, which guides the designers to parametric analyses and the layout of the bridge in conceptual or preliminary design. Continuous rigid frame bridge is popular in the mountainous area. Mostly, this type of bridge was simplified either as a girder or cantilever when calculating the frequency, however, studies showed that the different configuration of the bridge made the problem more complex, and there is no unified fundamental calculation pattern for this kind of bridge. In this study, an empirical frequency equation is proposed as a function of pier's height, stiffness of pier and the weight of the structure. A unified fundamental frequency formula is presented based on the energy principle, then the typical continuous rigid frame bridge is investigated by finite element method (FEM) to study the dynamic characteristics of the structure, and then several key parameters are investigated on the effect of structural frequency. These parameters include the number, position and stiffness of the tie beam. Nonlinear regression analyses are conducted with a comprehensive statistical study from plenty of engineering structures. Finally, the proposed frequency equation is validated by field test results. The results show that the fundamental frequency of the continuous rigid frame bridge increases more than 15% when the tie beams are set, and it increases with the stiffness ratio of tie beam to pier. The results also show that the presented unified fundamental frequency has an error of 4.6% compared with the measured results. The investigation can predicate the approximate longitudinal fundamental frequency of continuous ridged frame bridge, which can provide reference for the seismic response and dynamic impact factor design of the pier.

Development of Calculation Program for Thermophysical Properties of Synthetic Sand Mold (인공주물사의 열물성치 계산 프로그램 개발)

  • In-Sung Cho;Jeong-Ho Nam;K.D. Saveliyev;V.M. Golod;Hee-Soo Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.4
    • /
    • pp.194-200
    • /
    • 2023
  • The heat transfer of the mold in the casting process has been calculated by considering the mold as a uniform isotropic material. Since the mold was not a uniform isotropic material, however, the calculation was performed with approximate values, and in particular, estimated values were used when considering compaction and the amount of added binder. In this study, a calculation algorithm of the thermal properties of the sand mold was developed. An algorithm for calculating the thermal conductivity and specific heat based on a thermal resistance model in the case of mono-dispersed sand grains was also developed and applied to sand molds with various size distributions. The thermal properties of sand were calculated for artificial sand, and relatively close values compared to the experimental values were obtained.

A study on the accuracy of a numerical iteration for Markov processes by using reliability models (신뢰도 모형을 이용한 마코프 과정의 수치적 반복법의 정확성에 대한 연구)

  • Hyeonah Park;Seongryong Na
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.445-453
    • /
    • 2024
  • For Markov processes whose stationary probabilities are difficult to obtain in the analytical form, approximate solutions can be considered using numerical methods such as a matrix operation method or an iterative calculation method. In this paper we perform the study to verify the accuracy of a numerical iteration formula which calculate the stationary probabilities of Markov chains or processes. Especially, the convergence and accuracy of the numerical method are investigated by using Markov models for system availability. We compare the values of the system availability based on the numerical calculation and those based on the complicated but analytical solutions. We also calculate the iteration numbers necessary for the convergence of the numerical solutions. The accuracy and usefulness of the numerical iterative calculation method can be ascertained through this study.