• Title/Summary/Keyword: Appropriate thermal storage time

Search Result 11, Processing Time 0.028 seconds

Consideration of Appropriate Thermal Storage Time of Air-Conditioning System with Slab Thermal Storage in an Office Building by Use of Measurement Value (실측치를 통한 사무소건물 슬래브축열 공조시스템의 적정 축열시간 검토)

  • Jung, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.719-726
    • /
    • 2010
  • In this paper, the appropriate thermal storage time of an air-conditioning system with slab thermal storage was considered by use of summer measurement values. Two standards of heat extraction rate and criterion function were established as the standard that evaluates appropriateness. When heat extraction rate was a standard, zero hour and seven hours were obtained as appropriate thermal storage time, in the case of evaluation by energy consumption and running cost individually. Also, when criterion function was a standard, the difference between energy consumption and running cost was small, it was because the weight function to room air temperature deviation was much bigger than heat extraction rate.

Simple predictive heat leakage estimation of static non-vacuum insulated cryogenic vessel

  • Mzad, Hocine
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.25-30
    • /
    • 2020
  • The diminishing of heat leak into cryogenic vessels can prolong the storage time of cryogenic liquid. With the storage of cryogenic liquid reducing, the heat leak decreases, while the actual storage time increases. Regarding to the theoretical analysis, the obtained results seems to be constructive for the cryogenic insulation system applications. This study presents a predictive assessment of heat leak occurring in non-vacuum tanks with a single layer of insulation. A Radial steady-state heat transfer, based on heat conduction equation, is taken into consideration. Graphical results show the thermal performance of the insulation used, they also allow us to choose the appropriate insulation thickness according to the shape and diameter of the storage tank.

Experimental study on the cryogenic thermal storage unit (TSU) below -70 ℃

  • Byeongchang Byeon;Kyoung Joong Kim;Sangkwon Jeong;Dong min Kim;Mo Se Kim;Gi Dock Kim;Jung Hun Kim;Sang Yoon Lee;Seong Woo Lee;Keun Tae Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.20-24
    • /
    • 2024
  • Over the past four years, as the COVID-19 pandemic has struck the world, cold chain of COVID-19 vaccination has become a hot topic. In order to overcome the pandemic situation, it is necessary to establish a cold chain that maintains a low-temperature environment below approximately 203K (-70℃), which is the appropriate storage temperature for vaccines, from vaccine suppliers to local hospitals. Usually, cryocoolers are used to maintain low temperatures, but it is difficult for small-scale local distribution to have cryocooler due to budget and power supply issues. Accordingly, in this paper, a cryogenic TSU (Thermal storage unit) system for vaccination cold chain is designed that can maintain low temperatures below -70℃C for a long time without using a cryocooler. The performance of the TSU system according to the energy storage material for using as TSU is experimentally evaluated. In the experiments, four types of cold storage materials were used: 20% DMSO aqueous solution, 30% DMSO aqueous solution, paraffin wax, and tofu. Prior to the experiment, the specific heat of the cold storage materials at low temperature were measured. Through this, the thermal diffusivity of the materials was calculated, and paraffin wax had the lowest value. As a result of the TSU system's low-temperature maintenance test, paraffin wax showed the best low-temperature maintenance performance. And it recorded a low-temperature maintenance time that was about 24% longer than other materials. As a result of analyzing the temperature trend by location within the TSU system, it was observed that heat intrusion from the outside was not well transmitted to the low temperature area due to the low thermal conductivity of paraffin wax. Therefore, in the TSU system for vaccine storage, it was experimentally verified that the lower the thermal diffusivity of the cold storage material, the better low temperature maintenance performance.

Prediction of Thermal Behavior of Automotive LNG Fuel Tank (LNG 자동차 연료 탱크의 열적 거동에 대한 예측)

  • NamKoong, Kyu-Won;Chu, Seok-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.875-883
    • /
    • 2010
  • The thermal performance of LNG fuel tanks of vehicles is determined by the time for non-venting storage of fuel and the amount of fuel supplied to the engine. In this study, we selected a double-walled vacuum-insulated fuel tank with a volume of 450 liter, and the properties of the fuel contained in it were assumed to be the same as those of the methane($CH_4$). For the increasing the non-venting fuel storage time, we propose the use of shielded penetration pipes in the tank. We compared the storage times of the tank used in our study with those of the conventional fuel tank. Further, the additional heat input required to maintain the fuel pressure necessary for an appropriate fuel supply rate was predicted. For these parameters, we derived a thermodynamic relationship that can be used to estimate the rate of increase in pressure for a known heat input, and we obtained equations for estimating the rate of heat leaked by using the established heat transfer model. From the results of numerical computation, we found the non-venting storage time of the tank with shielded pipes to be 25-30% higher than that of the tank with unshielded pipes. Further, we determined the appropriate operation conditions by taking into consideration the transfer rate of additional heat provided to the fuel tank.

Quality Characteristics of Angelica gigas Nakai in Response to High-Temperature-Short-Time Treatment during Storage (고온단시간 처리에 따른 저장 중 참당귀의 품질 특성)

  • Lee, Eun Suk;Jee, Yun-jeong;Lee, Ji Yeon;Choi, Su Ji;Lee, Seung Eun;Kim, Hyung Don;Choi, Jehun;Kang, Min Hye;Kim, Dong Hwi;Jang, Gwi Yeong
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.6
    • /
    • pp.645-654
    • /
    • 2020
  • Angelica gigas Nakai (A. gigas) easily changes its color during storage, and appropriate thermal treatment can improve storage stability through inactivation of enzymes such as polyphenol oxidase. Therefore, this study was performed to determine quality characteristics of dried A. gigas in response to high-temperature-short-time (HTST) treatment during storage. Dried A. gigas were treated at 120-180℃ for 10 min, the samples were stored at 4℃ and 50℃ for 10 weeks, and used for the analysis of qualities. Concerning the color values, the sample treated at 120℃ was similar to the control, and the color change was large when treated above 180℃. However, color difference (ΔE⁎ab) was lower in treated samples than in control. Browning index was similar for all the samples except for the sample treated at 180℃. Functional qualities (phenolics content, antioxidant activities, and level of major components) showed a slight difference according to storage periods in all samples without control, and nodakenin content was observed in control. The results of this study showed that HTST treatment improved storage stability such as stability of colors and browning index in dried A. gigas during storage, and the appropriate treatment temperature was 120℃ in terms of stability in color and browning index.

Vacuum system design of a 10 ton/day class air liquefaction cold box for liquid air energy storage

  • Sehwan, In;Juwon, Kim;Junyoung, Park;Seong-Je, Park;Jiho, Park;Junseok, Ko;Hankil, Yeom;Hyobong, Kim;Sangyoon, Chu;Jongwoo, Kim;Yong-Ju, Hong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.65-70
    • /
    • 2022
  • A vacuum system is designed for thermal insulation of a 10 ton/day class air liquefaction cold box for liquid air energy storage. The vacuum system is composed of a turbomolecular pump, a backing pump and vacuum piping for the vacuum pumps. The turbomolecular pump is in combination with the backing pump for pumping capacity. The vacuum piping is designed with system installation conditions, such as distance from the cold box, connections to vacuum pumps and installation space. The capacity of the vacuum pump combination, namely pumping speed, is determined by analysis of the vacuum system, and pump-down time to 1×10-5 mbar is estimated. Vacuum piping conductance, system pumping speed and outgassing rate are calculated for the pump-down time with the ultimate pumping speed range of the vacuum pump combination of 1400 - 2300 l/s. Although the pump-down time gets shorter by larger capacity vacuum pumps, it mainly depends on target vacuum degree and outgassing rate in the cold box. The pump-down time is estimated as 3 - 6 hours appropriate for cold box operation for the pumping speed range. Considering the outgassing rate has uncertainty, the vacuum pump combination with pumping speed of 1900 l/s is chosen for the vacuum system, which is middle value of the pumping speed range.

Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation (해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석)

  • Jong-Hyeok RYU;Hyeon-Suk JEONG;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.

Measurement Methods of Latent Heat for PCM with Low Melting Temperature in Closed Tube

  • Hong Hiki;Kang Chaedong;Peck Jong Hyeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.4
    • /
    • pp.206-213
    • /
    • 2004
  • Cycle test for developed phase change material (PCM) is necessary in order to assess the variation of latent heat, which decreases with time by deterioration. T-history method and measurement using heat-flux meter are appropriate for the cycle test in a tube filled with PCM because they do not need an extraction of sample in measuring heat of fusion. In the present study, these methods were applied to a PCM having a melting point below a room temperature, different to the past studies for PCMs melting above a room temperature. As a result of experiment using pure water as specimen, we can obtained rea-sonable values for heat of fusion.

A STUDY ON OXIDATION TREATMENT OF URANIUM METAL CHIP UNDER CONTROLLING ATMOSPHERE FOR SAFE STORAGE

  • Kim, Chang-Kyu;Ji, Chul-Goo;Bae, Sang-Oh;Woo, Yoon-Myeoung;Kim, Jong-Goo;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than $300^{\circ}C$ and tested for oxidation at various temperatures, which are $300^{\circ}C$, $400^{\circ}C$, and $500^{\circ}C$. When the oxidation temperature was $400^{\circ}C$, the oxidized sample for 7 hours showed a temperature rise of $60^{\circ}C$ in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of $7^{\circ}C$ representing a stable behavior in the self-ignition test. When the temperature was $500^{\circ}C$, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported.

Evaluation of Performance and Reliability of a White Organic Light-Emitting Diode(WOLED) Using an Accelerated Life Test(ALT) (가속수명시험(ALT)을 이용한 WOLED의 성능 및 신뢰성 평가)

  • Moon, Jin-Chel;Park, Hyung-Ki;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.13-19
    • /
    • 2012
  • The purpose of this study is to extract the major factors related to the deterioration mechanism of white organic light-emitting diodes(WOLED) by performing accelerated testing of temperature, voltage, time, etc., and to develop an accelerated life test(ALT) model. The measurement results of the brightness of the WOLED exhibited that their average brightness tended to increase as the operating voltage increased and that the half-life period of the brightness appeared after approximately 400 hours when the operating voltage was 20V and the ambient temperature was $85^{\circ}C$. It could be seen that although the WOLED showed comparatively the same brightness when the initial acceleration began after the operating voltage was applied to it, its brightness changed excessively after the WOLED's thermal storage had been made. In addition, it was observed that the half-life period was reduced as the ambient temperature and applied voltage increased. The strength of the WOLED which had been maintained in the range of visible light at the maximum load was reduced by the deterioration of the organic light emitting material due to the influence of the operating voltage and temperature, and the reduction of emitted light was small at low voltage and temperature. It could be seen that the failure of the WOLED during the ALT was caused by wear due to load accumulation over time, and that Weibull distribution was appropriate for the life distribution and acceleration was established between test conditions. From the WOLED analysis, it is thought that factors influencing the brightness deterioration are voltage, temperature, etc., and that comprehensive analysis considering discharge control, dielectric tangent margin, etc., would further increase the reliability.