• Title/Summary/Keyword: Approaches to Learning

Search Result 968, Processing Time 0.031 seconds

A Study on Applying the SRCNN Model and Bicubic Interpolation to Enhance Low-Resolution Weeds Images for Weeds Classification

  • Vo, Hoang Trong;Yu, Gwang-hyun;Dang, Thanh Vu;Lee, Ju-hwan;Nguyen, Huy Toan;Kim, Jin-young
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.17-25
    • /
    • 2020
  • In the image object classification problem, low-resolution images may have a negative impact on the classification result, especially when the classification method, such as a convolutional neural network (CNN) model, is trained on a high-resolution (HR) image dataset. In this paper, we analyze the behavior of applying a classical super-resolution (SR) method such as bicubic interpolation, and a deep CNN model such as SRCNN to enhance low-resolution (LR) weeds images used for classification. Using an HR dataset, we first train a CNN model for weeds image classification with a default input size of 128 × 128. Then, given an LR weeds image, we rescale to default input size by applying the bicubic interpolation or the SRCNN model. We analyze these two approaches on the Chonnam National University (CNU) weeds dataset and find that SRCNN is suitable for the image size is smaller than 80 × 80, while bicubic interpolation is convenient for a larger image.

Image Captioning with Synergy-Gated Attention and Recurrent Fusion LSTM

  • Yang, You;Chen, Lizhi;Pan, Longyue;Hu, Juntao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3390-3405
    • /
    • 2022
  • Long Short-Term Memory (LSTM) combined with attention mechanism is extensively used to generate semantic sentences of images in image captioning models. However, features of salient regions and spatial information are not utilized sufficiently in most related works. Meanwhile, the LSTM also suffers from the problem of underutilized information in a single time step. In the paper, two innovative approaches are proposed to solve these problems. First, the Synergy-Gated Attention (SGA) method is proposed, which can process the spatial features and the salient region features of given images simultaneously. SGA establishes a gated mechanism through the global features to guide the interaction of information between these two features. Then, the Recurrent Fusion LSTM (RF-LSTM) mechanism is proposed, which can predict the next hidden vectors in one time step and improve linguistic coherence by fusing future information. Experimental results on the benchmark dataset of MSCOCO show that compared with the state-of-the-art methods, the proposed method can improve the performance of image captioning model, and achieve competitive performance on multiple evaluation indicators.

Dual Branched Copy-Move Forgery Detection Network Using Rotation Invariant Energy in Wavelet Domain (웨이블릿 영역에서 회전 불변 에너지 특징을 이용한 이중 브랜치 복사-이동 조작 검출 네트워크)

  • Jun Young, Park;Sang In, Lee;Il Kyu, Eom
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.309-317
    • /
    • 2022
  • In this paper, we propose a machine learning-based copy-move forgery detection network with dual branches. Because the rotation or scaling operation is frequently involved in copy-move forger, the conventional convolutional neural network is not effectively applied in detecting copy-move tampering. Therefore, we divide the input into rotation-invariant and scaling-invariant features based on the wavelet coefficients. Each of the features is input to different branches having the same structure, and is fused in the combination module. Each branch comprises feature extraction, correlation, and mask decoder modules. In the proposed network, VGG16 is used for the feature extraction module. To check similarity of features generated by the feature extraction module, the conventional correlation module used. Finally, the mask decoder model is applied to develop a pixel-level localization map. We perform experiments on test dataset and compare the proposed method with state-of-the-art tampering localization methods. The results demonstrate that the proposed scheme outperforms the existing approaches.

Curriculum Design for Digital Fashion Film Making (디지털 패션필름 제작 교과에 관한 커리큘럼 개발)

  • Mikyung Kim;Eunhyuk Yim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.4
    • /
    • pp.429-438
    • /
    • 2023
  • In the 21st century fashion industry, the rise of digital environments has transformed it into a dynamic medium, expanding the horizons of media utilization. Consequently, digital fashion film has emerged as a pivotal tool for fashion communication. Functioning as a visual expression medium, fashion film animates fashion concepts into immersive moving images. Proficiency in digital fashion communication has become imperative, considering the attributes of fashion media. Notably, the role of creative directors in ensuring coherent communication across diverse fashion media platforms has gained prominence, underscoring the need for systematic fashion education to nurture specialized talent. This study, therefore, devised a comprehensive curriculum amalgamating fashion communication and practical digital media skills, implemented within fashion major courses. Through this approach, students gained experimental media proficiency and explored innovative approaches to crafting fashion films that eloquently convey fashion narratives. The participants were exposed to the entire spectrum of fashion media production, encompassing digital storytelling, fashion film conceptualization, filming techniques, meticulous editing, and adept utilization of special effects technology. The study's pedagogical strategy, characterized by a focused learning trajectory, garnered significant acclaim. In essence, this study holds significance by formulating a curriculum that nurtures the imaginative and pragmatic aptitudes of fashion majors, immersing them in the dynamic realm of rapidly evolving digital fashion films and their integration with fashion content.

Intrusion Detection System Utilizing Stack Ensemble and Adjacent Netflow (스텍앙상블과 인접 넷플로우를 활용한 침입 탐지 시스템)

  • Ji-Hyun Sung;Kwon-Yong Lee;Sang-Won Lee;Min-Jae Seok;Se-Rin Kim;Harksu Cho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1033-1042
    • /
    • 2023
  • This paper proposes a network intrusion detection system that identifies abnormal flows within the network. The majority of datasets commonly used in research lack time-series information, making it challenging to improve detection rates for attacks with fewer instances due to a scarcity of sample data. However, there is insufficient research regarding detection approaches. In this study, we build upon previous research by using the Artificial neural network(ANN) model and a stack ensemble technique in our approach. To address the aforementioned issues, we incorporate temporal information by leveraging adjacent flows and enhance the learning of samples from sparse attacks, thereby improving both the overall detection rate and the detection rate for sparse attacks.

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

Narrative Strategies for Learning Enhanced Interface Design "Symbol Mall"

  • Uttaranakorn, Jirayu;McGregor, Donna-Lynne;Petty, Sheila
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.417-420
    • /
    • 2002
  • Recent works in the area of multimedia studies focus on a wide range of issues from the impact of multimedia on culture to its impact on economics and anything in between. The interconnectedness of the issues raised by this new practice is complicated by the fact that media are rapidly converging: in a very real way, multimedia is becoming a media prism that reflects the way in which media continually influence each other across disciplines and cultural borders. Thus, the impact of multimedia reflects a complicated crossroads where media, human experience, culture and technology converge. An effective design is generally based on shaping aesthetics for function and utility, with an emphasis on ease of use. However, in designing for cyberspace, it is possible to create narratives that challenge the interactor by encoding in the design an instructional aspect that teaches new approaches and forms. Such a design offers an equally aesthetic experience for the interactor as they explore the meaning of the work. This design approach has been used constructively in many applications. The crucial concern is to determine how little or how much information must be presented for the interactor to achieve a suitable level of cognition. This is always a balancing act: too much difficulty will result in interactor frustration and the abandonment of the activity and too little will result in boredom leading to the same negative result In addition, it can be anticipated that the interactor will bring her or his own level of experiential cognition and/or accretion, to the experience providing reflective cognition and/or restructure the learning curve. If the design of the application is outside their present experience, interactors will begin with established knowledge in order to explore the new work. Thus, it may be argued that the interactor explores, learns and cognates simultaneously based on primary experiential cognition. Learning is one of the most important keys to establishing a comfort level in a new media work. Once interactors have learned a new convention, they apply this cognitive knowledge to other new media experiences they may have. Pierre Levy would describe this process as a "new nomadism" that creates "an invisible space of understanding, knowledge, and intellectual power, within which new qualities of being and new ways of fashioning a society will flourish and mutate" (Levy xxv 1997). Thus, navigation itself of offers the interactors the opportunity to both apply and loam new cognitive skills. This suggests that new media narrative strategies are still in the process of developing unique conventions and, as a result, have not reached a level of coherent grammar. This paper intends to explore the cognitive aspects of new media design and in particular, will explore issues related to the design of new media interfaces. The paper will focus on the creation of narrative strategies that engage interactors through loaming curves thus enhancing interactivity.vity.

  • PDF

Prediction Model of Real Estate ROI with the LSTM Model based on AI and Bigdata

  • Lee, Jeong-hyun;Kim, Hoo-bin;Shim, Gyo-eon
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • Across the world, 'housing' comprises a significant portion of wealth and assets. For this reason, fluctuations in real estate prices are highly sensitive issues to individual households. In Korea, housing prices have steadily increased over the years, and thus many Koreans view the real estate market as an effective channel for their investments. However, if one purchases a real estate property for the purpose of investing, then there are several risks involved when prices begin to fluctuate. The purpose of this study is to design a real estate price 'return rate' prediction model to help mitigate the risks involved with real estate investments and promote reasonable real estate purchases. Various approaches are explored to develop a model capable of predicting real estate prices based on an understanding of the immovability of the real estate market. This study employs the LSTM method, which is based on artificial intelligence and deep learning, to predict real estate prices and validate the model. LSTM networks are based on recurrent neural networks (RNN) but add cell states (which act as a type of conveyer belt) to the hidden states. LSTM networks are able to obtain cell states and hidden states in a recursive manner. Data on the actual trading prices of apartments in autonomous districts between January 2006 and December 2019 are collected from the Actual Trading Price Disclosure System of the Ministry of Land, Infrastructure and Transport (MOLIT). Additionally, basic data on apartments and commercial buildings are collected from the Public Data Portal and Seoul Metropolitan Government's data portal. The collected actual trading price data are scaled to monthly average trading amounts, and each data entry is pre-processed according to address to produce 168 data entries. An LSTM model for return rate prediction is prepared based on a time series dataset where the training period is set as April 2015~August 2017 (29 months), the validation period is set as September 2017~September 2018 (13 months), and the test period is set as December 2018~December 2019 (13 months). The results of the return rate prediction study are as follows. First, the model achieved a prediction similarity level of almost 76%. After collecting time series data and preparing the final prediction model, it was confirmed that 76% of models could be achieved. All in all, the results demonstrate the reliability of the LSTM-based model for return rate prediction.

Hierarchical Ann Classification Model Combined with the Adaptive Searching Strategy (적응적 탐색 전략을 갖춘 계층적 ART2 분류 모델)

  • 김도현;차의영
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.649-658
    • /
    • 2003
  • We propose a hierarchical architecture of ART2 Network for performance improvement and fast pattern classification model using fitness selection. This hierarchical network creates coarse clusters as first ART2 network layer by unsupervised learning, then creates fine clusters of the each first layer as second network layer by supervised learning. First, it compares input pattern with each clusters of first layer and select candidate clusters by fitness measure. We design a optimized fitness function for pruning clusters by measuring relative distance ratio between a input pattern and clusters. This makes it possible to improve speed and accuracy. Next, it compares input pattern with each clusters connected with selected clusters and finds winner cluster. Finally it classifies the pattern by a label of the winner cluster. Results of our experiments show that the proposed method is more accurate and fast than other approaches.

Detection of Active Fire Objects from Drone Images Using YOLOv7x Model (드론영상과 YOLOv7x 모델을 이용한 활성산불 객체탐지)

  • Park, Ganghyun;Kang, Jonggu;Choi, Soyeon;Youn, Youjeong;Kim, Geunah;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1737-1741
    • /
    • 2022
  • Active fire monitoring using high-resolution drone images and deep learning technologies is now an initial stage and requires various approaches for research and development. This letter examined the detection of active fire objects using You Look Only Once Version 7 (YOLOv7), a state-of-the-art (SOTA) model that has rarely been used in fire detection with drone images. Our experiments showed a better performance than the previous works in terms of multiple quantitative measures. The proposed method can be applied to continuous monitoring of wide areas, with an integration of additional development of new technologies.