• Title/Summary/Keyword: Approaches to Learning

Search Result 968, Processing Time 0.027 seconds

A Study on How to Apply GBS (Goal-Based Scenario) to 'Ecology & Environment' Education in High School (GBS(Goal-Based Scenario)에 의한 수업 개발 및 적용 방안 연구: 고등학교 '생태와 환경' 수업 사례 중심으로)

  • Kang, In-Ae;Lee, Myong-Soon
    • Hwankyungkyoyuk
    • /
    • v.21 no.4
    • /
    • pp.94-110
    • /
    • 2008
  • Recently environmental problem becomes such a big issue all over the world that the necessity and importance of the environmental education in school has been simultaneously emphasized. While diverse methods for the environmental education have been researched, this paper, especially focused on a teaching-learning model called GBS (Goal-based scenario), aims to provide a new learner-centered approach for the environmental education. For this purpose, this paper first briefly presents two theoretical backgrounds of GBS (i.e., constructivism and Schank's dynamic memory theory), which is followed by specific and concrete strategies and methods of how to apply GBS in class for the teacher. GBS(Goal-Based Scenario) is a learner-centered model in which learners are presented with a reality-based scenario (or task or problem) and go through several stages of 'missions' to get to a final solution of the given scenario. GBS, while completely resonant with other constructivist learning models in terms of learner-centered approaches, is distinctive from others, when it supplies more specific, structured guides of learning, called 'missions', to the students throughout the whole learning process. In a words, GBS ought to be recognized as an unique learner-centered model compromising the contradictory concepts of 'learner control' and 'structure and specifics' in learning environments still without any damage of constructivist learning principles.

  • PDF

The effect of mindmap online educational contents on college students' higher thinking ability and self-directed learning attitude (마인드맵 온라인 교육 콘텐츠가 대학생의 고등사고능력 및 자기주도적 학습태도에 미치는 영향)

  • Cha, Seungbong;Park, Hyejin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.55-65
    • /
    • 2022
  • The purpose of this study is to develop online educational contents and verify its effectiveness in order to strengthen the learning capabilities of college students. The theme of mind map online education contents is a mind map series for effective learning arrangement, and has been developed into a total of six contents. Each contents consisted of 20-30 minutes, and the details consisted of the concept, principle, learning case, how to write a mind map, and how to use a digital mind map. The results of the study are as follows. First, it was confirmed that the higher thinking ability of college students who took the mind map online education contents was improved. Second, it was confirmed that the self-directed learning attitude of college students improved after taking the mind map online education contents. Third, the reason why students' higher thinking ability and self-directed learning attitudes improved in this study is that they were developed in consideration of the composition of contents and appropriate video time. Therefore, in order to increase the effectiveness of online educational contents, it is necessary to examine specific cases using concepts from conceptual approaches to specific topics, and to faithfully reflect the procedure in which each learner can actually use the concept.

Optimizing Energy Efficiency in Mobile Ad Hoc Networks: An Intelligent Multi-Objective Routing Approach

  • Sun Beibei
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.107-114
    • /
    • 2024
  • Mobile ad hoc networks represent self-configuring networks of mobile devices that communicate without relying on a fixed infrastructure. However, traditional routing protocols in such networks encounter challenges in selecting efficient and reliable routes due to dynamic nature of these networks caused by unpredictable mobility of nodes. This often results in a failure to meet the low-delay and low-energy consumption requirements crucial for such networks. In order to overcome such challenges, our paper introduces a novel multi-objective and adaptive routing scheme based on the Q-learning reinforcement learning algorithm. The proposed routing scheme dynamically adjusts itself based on measured network states, such as traffic congestion and mobility. The proposed approach utilizes Q-learning to select routes in a decentralized manner, considering factors like energy consumption, load balancing, and the selection of stable links. We present a formulation of the multi-objective optimization problem and discuss adaptive adjustments of the Q-learning parameters to handle the dynamic nature of the network. To speed up the learning process, our scheme incorporates informative shaped rewards, providing additional guidance to the learning agents for better solutions. Implemented on the widely-used AODV routing protocol, our proposed approaches demonstrate better performance in terms of energy efficiency and improved message delivery delay, even in highly dynamic network environments, when compared to the traditional AODV. These findings show the potential of leveraging reinforcement learning for efficient routing in ad hoc networks, making the way for future advancements in the field of mobile ad hoc networking.

Diabetes Detection and Forecasting using Machine Learning Approaches: Current State-of-the-art

  • Alwalid Alhashem;Aiman Abdulbaset ;Faisal Almudarra ;Hazzaa Alshareef ;Mshari Alqasoumi ;Atta-ur Rahman ;Maqsood Mahmud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.199-208
    • /
    • 2023
  • The emergence of COVID-19 virus has shaken almost every aspect of human life including but not limited to social, financial, and economic changes. One of the most significant impacts was obviously healthcare. Now though the pandemic has been over, its aftereffects are still there. Among them, a prominent one is people lifestyle. Work from home, enhanced screen time, limited mobility and walking habits, junk food, lack of sleep etc. are several factors that have still been affecting human health. Consequently, diseases like diabetes, high blood pressure, anxiety etc. have been emerging at a speed never witnessed before and it mainly includes the people at young age. The situation demands an early prediction, detection, and warning system to alert the people at risk. AI and Machine learning has been investigated tremendously for solving the problems in almost every aspect of human life, especially healthcare and results are promising. This study focuses on reviewing the machine learning based approaches conducted in detection and prediction of diabetes especially during and post pandemic era. That will help find a research gap and significance of the study especially for the researchers and scholars in the same field.

Evaluations of AI-based malicious PowerShell detection with feature optimizations

  • Song, Jihyeon;Kim, Jungtae;Choi, Sunoh;Kim, Jonghyun;Kim, Ikkyun
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.549-560
    • /
    • 2021
  • Cyberattacks are often difficult to identify with traditional signature-based detection, because attackers continually find ways to bypass the detection methods. Therefore, researchers have introduced artificial intelligence (AI) technology for cybersecurity analysis to detect malicious PowerShell scripts. In this paper, we propose a feature optimization technique for AI-based approaches to enhance the accuracy of malicious PowerShell script detection. We statically analyze the PowerShell script and preprocess it with a method based on the tokens and abstract syntax tree (AST) for feature selection. Here, tokens and AST represent the vocabulary and structure of the PowerShell script, respectively. Performance evaluations with optimized features yield detection rates of 98% in both machine learning (ML) and deep learning (DL) experiments. Among them, the ML model with the 3-gram of selected five tokens and the DL model with experiments based on the AST 3-gram deliver the best performance.

Comparative studies of different machine learning algorithms in predicting the compressive strength of geopolymer concrete

  • Sagar Paruthi;Ibadur Rahman;Asif Husain
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.607-613
    • /
    • 2023
  • The objective of this work is to determine the compressive strength of geopolymer concrete utilizing four distinct machine learning approaches. These techniques are known as gradient boosting machine (GBM), generalized linear model (GLM), extremely randomized trees (XRT), and deep learning (DL). Experimentation is performed to collect the data that is then utilized for training the models. Compressive strength is the response variable, whereas curing days, curing temperature, silica fume, and nanosilica concentration are the different input parameters that are taken into consideration. Several kinds of errors, including root mean square error (RMSE), coefficient of correlation (CC), variance account for (VAF), RMSE to observation's standard deviation ratio (RSR), and Nash-Sutcliffe effectiveness (NSE), were computed to determine the effectiveness of each algorithm. It was observed that, among all the models that were investigated, the GBM is the surrogate model that can predict the compressive strength of the geopolymer concrete with the highest degree of precision.

Classification of Natural and Artificial Forests from KOMPSAT-3/3A/5 Images Using Deep Neural Network (심층신경망을 이용한 KOMPSAT-3/3A/5 영상으로부터 자연림과 인공림의 분류)

  • Baek, Won-Kyung;Lee, Yong-Suk;Park, Sung-Hwan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1965-1974
    • /
    • 2021
  • Satellite remote sensing approach can be actively used for forest monitoring. Especially, it is much meaningful to utilize Korea multi-purpose satellites, an independently operated satellite in Korea, for forest monitoring of Korea, Recently, several studies have been performed to exploit meaningful information from satellite remote sensed data via machine learning approaches. The forest information produced through machine learning approaches can be used to support the efficiency of traditional forest monitoring methods, such as in-situ survey or qualitative analysis of aerial image. The performance of machine learning approaches is greatly depending on the characteristics of study area and data. Thus, it is very important to survey the best model among the various machine learning models. In this study, the performance of deep neural network to classify artificial or natural forests was analyzed in Samcheok, Korea. As a result, the pixel accuracy was about 0.857. F1 scores for natural and artificial forests were about 0.917 and 0.433 respectively. The F1 score of artificial forest was low. However, we can find that the artificial and natural forest classification performance improvement of about 0.06 and 0.10 in F1 scores, compared to the results from single layered sigmoid artificial neural network. Based on these results, it is necessary to find a more appropriate model for the forest type classification by applying additional models based on a convolutional neural network.

Differences in Conception of Science Learning in Accordance with the Science-giftedness, Gender and Subject Preference (과학영재성, 성별, 과목 선호도에 따른 과학학습에 대한 개념의 차이)

  • Park, Ji-Yeon;Jeon, Dong-Ryul
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.4
    • /
    • pp.491-504
    • /
    • 2011
  • We investigated science-gifted students' conceptions on science learning. The inventory instruments used for our study were a questionnaire on the conceptions of learning science (COLS) and a questionnaire on the approaches to learning science (ALS). Our analysis of the questionnaires showed that there are differences in the conceptions of science learning between the science-gifted and ordinary students. Science-gifted students perceive science learning as storing up of scientific knowledge, expansion of knowledge structure and achievement of a new view. There are no differences in the conceptions of science learning between male and female science-gifted students. There are also no differences in the conceptions of science learning in terms of subject preference such as physics, chemistry, biology and earth science. Our analysis offer assistance to teaching material and teaching method for science courses.

Convergence Analysis of Recognition and Influence on Bigdata in the e-Learning Field (이러닝 분야의 빅데이터에 관한 인식과 영향에 관한 융합적 분석)

  • Noh, Kyoo-Sung
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.51-58
    • /
    • 2015
  • The utilization of Big data in the field of education has spread around the developed countries. However, in Korea, there are only experimental approaches related to Bigdata, yet for the related researches and services to appear. Therefore, it is the situation that needs to understand the reason for poor use of big data in the e-Learning industry, study and seek out alternatives to solve these problems. The result of this study shows that it was investigated that the high level of understanding of Bigdata has recognized large impact on e-Learning of Big Data and the more large-scale sales companies have recognized large impact on e-Learning of Big Data in the e-Learning industry. In conclusion, this study makes a proposal to expand the training and utilization policies of Bigdata relating to different sales scales.

K-Means Clustering with Deep Learning for Fingerprint Class Type Prediction

  • Mukoya, Esther;Rimiru, Richard;Kimwele, Michael;Mashava, Destine
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.29-36
    • /
    • 2022
  • In deep learning classification tasks, most models frequently assume that all labels are available for the training datasets. As such strategies to learn new concepts from unlabeled datasets are scarce. In fingerprint classification tasks, most of the fingerprint datasets are labelled using the subject/individual and fingerprint datasets labelled with finger type classes are scarce. In this paper, authors have developed approaches of classifying fingerprint images using the majorly known fingerprint classes. Our study provides a flexible method to learn new classes of fingerprints. Our classifier model combines both the clustering technique and use of deep learning to cluster and hence label the fingerprint images into appropriate classes. The K means clustering strategy explores the label uncertainty and high-density regions from unlabeled data to be clustered. Using similarity index, five clusters are created. Deep learning is then used to train a model using a publicly known fingerprint dataset with known finger class types. A prediction technique is then employed to predict the classes of the clusters from the trained model. Our proposed model is better and has less computational costs in learning new classes and hence significantly saving on labelling costs of fingerprint images.