• Title/Summary/Keyword: Approach Angle

Search Result 976, Processing Time 0.034 seconds

Development of Right-Turning Channelization Design Models of Semitrailer at Intersections (평면교차로 세미트레일러 우회전 도류로 설계 모형 개발)

  • Lee, Suk-Ki;Park, Soon Yong;Jeong, Jun-Hwa;Lee, Ju-Hwan
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.99-106
    • /
    • 2014
  • PURPOSES : This study is to develop Right-Turning Channelization Design Models of Semitrailer at Intersections by regression of vehicle tracking simulation. METHODS : Based on the literature review, it was indicated that right-turning channelization design guide of semitrailer is too complex and is not reflected turning speed and approach angle. To verify effectiveness of right turning semitrailer trajectories according to the changing turning speed and approach angle, vehicle tracking simulation was executed. And then, simulation results were analyzed for modeling design elements; minimum turning radius, swept path width, arc length, width of triangle island, of right-turning channelization using regression methods. RESULTS : When the turning speed is getting higher, minimum turning radius, arc length, width of triangle island increased and the approach angle lower, swept path width, arc length, width of triangle island reduced. The turning radius completely reflected by turning speed. CONCLUSIONS : In this research, it was investigated how much design elements are changed according to the turning speed and the approach angle of semitrailer. The developed right-turning channelization design models can help engineers to easy and comfortable design at various conditions.

A Stator Fault Diagnosis of an Induction Motor based on the Phase Angle of Park's Vector Approach (Park's Vector Approach의 위상각 변이를 활용한 유도전동기 고정자 고장진단)

  • Go, Young-Jin;Lee, Buhm;Song, Myung-Hyun;Kim, Kyoung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.408-413
    • /
    • 2014
  • In this paper, we propose a fault diagnosis method based on Park's Vector Approach using the Euler's theorem. If we interpreted it as Euler's theorem, it is possible to easily find the phase angle difference between the healthy condition and the fault condition. And, we analyzed the variation of the phase angle and performed the diagnostic method of the induction motor using feature vectors that were obtained by using a Fourier transform. The analysis of time and speed variation of the motor was performed and, as a result, we could find more soft variations than rough variations. In particular, the analysis of the distortion through each phase shows that two-turn and four-turn shorted motors are linearly separable. In this experiment, we know that the maximum breakdown threshold value for determining steady-state fault detection is 49.0788. Simulation and experimental results show the more detectable than conventional method.

Measurement Method of Airburst Height Using the Approach Angle (비행체 진입각을 이용한 공중 폭발고도 계측 방법)

  • Kim, Jinho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.497-504
    • /
    • 2017
  • This paper proposes a method to measure the airburst height by utilizing a high speed camera. This method might be applied to the test of which flight target is alive after the burst. The proposed method consists of four main steps. The first step is to compute the impact point using the sea surface height. The second step is to compute the height of burst (HOB) by using the distance from the camera to the impact point. This could be different from the real explosion height. That is because the distance from the camera to the burst point is not the same as it from the camera to the impact point. Therefore, the third step is to calculate the approach angle of the flight target with respect to the installed camera. Then, the last step is to compensate the computed height by using the approach angle. The result of the proposed method is compared with it from the triangulation. In this paper, the HOB error is also analyzed regarding the approach angle difference. Based on this analysis, the camera position might be suggested for error reduction.

Factors in Selection of Surgical Approaches for Lower Lumbar Burst Fractures (하부 요추 방출 골절의 수술방법 결정시 고려 요인들)

  • Jahng, Tae-Ahn;Kim, Jong-Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.8
    • /
    • pp.1055-1062
    • /
    • 2000
  • Objectives : Burst fracture of the lower lumbar spine(L3-L5) is rare and has some different features compare to that of thoracolumbar junction. Lower lumbar spine is flexible segments located deeply, and has physiologic lordosis. All of these contribute to making surgical approach difficult. Generally, lower lumbar burst fracture is managed either anteriorly or posteriorly with various fixation and fusion methods. But there is no general guideline or consensus regarding the proper approach for such lesion. We have tried to find out the influencing factors for selecting the surgical approach through the analysis of lower lumbar burst fractures treated for last 4 years(1994.3-1998.3). Method : This study includes 15 patients(male : 10, female : 5, age range 20-59 years with mean age of 36.7 years, L3 : 8 cases, L4 : 5 cases, L5 : 2 cases). Patients were classified into anterior(AO) and posterior operated(PO) groups. We investigated clinical findings, injured column, operation methods, and changes in follow-up radiologic study (kyphotic angle) to determine the considerable factors in selecting the surgical approaches. Results : There were 5 AO and 10 PO patients. Anterior operation were performed with AIF with Kaneda or Z-plate and posterior operation were done with pedicle screw fixation with PLIF with cages or posterolateral fusion. Canal compression was 46.6% in AO and 38.8% in PO. The degree of kyphotic angle correction were 10.7 degree(AO) and 8.5 degree(PO), respectively. There was no statistical difference between anterior and posterior operation group. All patients showed good surgical outcome without complications. Conclusion : Anterior operation provided good in kyphotic angle correction and firm anterior strut graft, but it difficulty arose in accessing the lesions below L4 vertebra. While posterior approach showed less correction of kyphotic angle, it required less time and provided better results for accompanied adjacent lesion and pathology such as epidural hematoma. The level of injury, canal compression, biomechanics, multiplicity, and pathology are considered to be important factors in selection of the surgical approach.

  • PDF

Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach

  • Singh, Agyapal;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.55-89
    • /
    • 2020
  • For the first time, an accurate analytical solution, based on coupled three-dimensional (3D) piezoelasticity equations, is presented for free vibration analysis of the angle-ply elastic and piezoelectric flat laminated panels under arbitrary boundary conditions. The present analytical solution is applicable to composite, sandwich and hybrid panels having arbitrary angle-ply lay-up, material properties, and boundary conditions. The modified Hamiltons principle approach has been applied to derive the weak form of governing equations where stresses, displacements, electric potential, and electric displacement field variables are considered as primary variables. Thereafter, multi-term multi-field extended Kantorovich approach (MMEKM) is employed to transform the governing equation into two sets of algebraic-ordinary differential equations (ODEs), one along in-plane (x) and other along the thickness (z) direction, respectively. These ODEs are solved in closed-form manner, which ensures the same order of accuracy for all the variables (stresses, displacements, and electric variables) by satisfying the boundary and continuity equations in exact manners. A robust algorithm is developed for extracting the natural frequencies and mode shapes. The numerical results are reported for various configurations such as elastic panels, sandwich panels and piezoelectric panels under different sets of boundary conditions. The effect of ply-angle and thickness to span ratio (s) on the dynamic behavior of the panels are also investigated. The presented 3D analytical solution will be helpful in the assessment of various 1D theories and numerical methods.

A Novel Procedure for Mooring Chain Fatigue Prediction based on Maximum Principal Stress Considering Out-of-Plane and In-Plane Bending Effects (면내외 굽힘 효과를 고려한 최대 주응력 기반 계류 체인 피로 평가 기법 개발)

  • Choung, Joonmo;Han, SeungOh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.237-248
    • /
    • 2016
  • As OPB and IPB moment-induced fatigue damage on mooring chain links were reported for a offloading buoy, verification of OPB and IPB fatigue has been a key engineering item in offshore structure mooring design. Mathematical and physical features of the conventional approach which was mainly explained in BV guideline are reviewed and disadvantages of the conventional approach are addressed in terms of stress proportionality and nonlinearity of OPB and IPB moments. In order to eradicate these disadvantages, a novel approach is newly proposed which is able to dispel apprehension on stress proportionality and is not dependent of nonlinearities of OPB and IPB moments. Significant differences between two approaches are suggested by comparing relations of OPB moment versus OPB interlink angle and IPB moment versus IPB interlink angle. For periodic OPB tension angle processes having three different OPB angle ranges with a simple irregular tension process, fatigue damage calculation reveals that OPB moment-induced fatigue damage has dominant portion to total fatigue damage. Comparative studies between two approaches also show that the conventional approach based on BV guideline predicts fatigue damage far conservatively since it assume unrealistic high stress concentration factor for tension load. Meanwhile IPB moment-induced fatigue damage is negligible compared to tension-induced fatigue damage.

The Depth and Angle during Caudal Epidural Approach in Adult (성인에서 미추부 경막외강의 깊이와 각도)

  • Jo, Dae-Hyun;Kim, Myoung-Hee;Choy, Yoon-Keun
    • The Korean Journal of Pain
    • /
    • v.14 no.2
    • /
    • pp.207-210
    • /
    • 2001
  • Backgroud: Caudal blocks have been used for pain management in outpatient clinics. It is important to estimate the proper depth and angle in order to increase the success rate of the procedure. Methods: Data was collected from 60 patients who visited our pain clinic. We measured the depth of the needle's penetration and the angle of the needle at the insertion point when a caudal approach was confirmed by air flow method. We recorded age, sex, body weight and height, and calculated the ponderal index. Results: The depth from the skin to the caudal epidural space was a mean 2-4 cm ($3{\pm}0.4\;cm$). The angle at the needle insertion point was a mean 15-50 degree ($34.9{\pm}6.8$ degree). Conclusions: If we use the mean depth and angle as a guide, complications during the caudal epidural procedure can be avoided.

  • PDF

Multiple UAVs Nonlinear Guidance Laws for Stationary Target Observation with Waypoint Incidence Angle Constraint

  • Kim, Mingu;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • Nonlinear guidance law combined with a pseudo pursuit guidance is proposed, to perform stationary target observation mission. Multiple UAVs are considered, with waypoint constraint. The whole guidance is divided into two steps: firstly, waypoint approach, with specified incidence angle; and secondly, loitering around the stationary target. Geometric approach is used to consider the constraint on the waypoint, and a specified phase angle between the loitering UAV and the approaching UAV. In the waypoint approach step, UAVs fly to the waypoint using the pseudo pursuit guidance law. After passing the waypoint, UAVs turn around the target, using a distance error dynamics-based guidance law. Numerical simulations are performed, to verify the performance of the proposed guidance law.

Formation Control for Underactuated Autonomous Underwater Vehicles Using the Approach Angle

  • Kim, Kyoung Joo;Park, Jin Bae;Choi, Yoon Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.154-163
    • /
    • 2013
  • In this paper, we propose a formation control algorithm for underactuated autonomous underwater vehicles (AUVs) with parametric uncertainties using the approach angle. The approach angle is used to solve the underactuated problem for AUVs, and the leader-follower strategy is used for the formation control. The proposed controller considers the nonzero off-diagonal terms of the mass matrix of the AUV model and the associated parametric uncertainties. Using the state transformation, the mass matrix, which has nonzero off-diagonal terms, is transformed into a diagonal matrix to simplify designing the control. To deal with the parametric uncertainties of the AUV model, a self-recurrent wavelet neural network is used. The proposed formation controller is designed based on the dynamic surface control technique. Some simulation results are presented to demonstrate the performance of the proposed control method.

A finite element based approach to observe hydrodynamic pressure in reservoir adjacent to concrete gravity dam

  • Santosh Kumar, Das;Kalyan Kumar, Mandal;Arup Guha, Niyogi
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.385-402
    • /
    • 2022
  • This paper deals with the study of hydrodynamic pressure in reservoir adjacent to the concrete gravity dam subjected to dynamic excitation. Widely famous finite element method is used to discretize the reservoir domain for modelling purpose. Pressure is considered as nodal variable following Eulerian approach. A suitable nonreflecting boundary condition is applied at truncated face of reservoir to make the infinite reservoir to finite one for saving the computational cost. Thorough studies have been done on generation of hydrodynamic pressure in reservoir with variation of different geometrical properties. Velocity profile and hydrodynamic pressure are observed due to harmonic excitation for variation of inclination angle of dam reservoir interface. Effect of bottom slope angle and inclined length of reservoir bottom on hydrodynamic pressure coefficient of reservoir are also observed. There is significant increase in hydrodynamic pressure and distinct changes in velocity profile of reservoir are noticeable for change in inclination angle of dam reservoir interface. Change of bottom slope and inclined length of reservoir bottom are also governing factor for variation of hydrodynamic pressure in reservoir subjected to dynamic excitation.