Browse > Article
http://dx.doi.org/10.5139/IJASS.2013.14.1.67

Multiple UAVs Nonlinear Guidance Laws for Stationary Target Observation with Waypoint Incidence Angle Constraint  

Kim, Mingu (School of Mechanical and Aerospace Engineering, Seoul National University)
Kim, Youdan (School of Mechanical and Aerospace Engineering, Seoul National University)
Publication Information
International Journal of Aeronautical and Space Sciences / v.14, no.1, 2013 , pp. 67-74 More about this Journal
Abstract
Nonlinear guidance law combined with a pseudo pursuit guidance is proposed, to perform stationary target observation mission. Multiple UAVs are considered, with waypoint constraint. The whole guidance is divided into two steps: firstly, waypoint approach, with specified incidence angle; and secondly, loitering around the stationary target. Geometric approach is used to consider the constraint on the waypoint, and a specified phase angle between the loitering UAV and the approaching UAV. In the waypoint approach step, UAVs fly to the waypoint using the pseudo pursuit guidance law. After passing the waypoint, UAVs turn around the target, using a distance error dynamics-based guidance law. Numerical simulations are performed, to verify the performance of the proposed guidance law.
Keywords
Nonlinear guidance law; Target observation; Virtual waypoint; Pursuit guidance law;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Elston, J., and Frew, E. W., "Net-Centric Cooperative Tracking of Moving Targets," AIAA Infotech@Aerospace 2007 Conference and Exhibit, Rohnert Park, CA, 2007.
2 Frew, E. W., Lawrence, D. A., and Morris, S., "Coordinated Standoff Tracking of Moving Targets Using Lyapunov Guidance Vector Fields," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 2, 2008, pp. 290-306.   DOI   ScienceOn
3 Summers, T. H., Akella, M. R., and Mears, M. J., "Coordinated Standoff Tracking of Moving Targets: Control Laws and Information Architectures," Journal of Guidance, Control, and Dynamics, Vol. 32, No. 1, 2009, pp. 56-69.   DOI   ScienceOn
4 Zhu, S., Wang, D., and Chen, Q., "Standoff Tracking Control of Moving Target in Unknown Wind," 48th IEEE Conference on Decision and Control, Shanghai, China, 2009.
5 Chen, H., Chang, K. C., and Agate, C. S., "Tracking with UAV using Tangent-plus-Lyapunov Vector Field Guidance," 12th International conference on Information Fusion, Seattle, WA, 2009.
6 Lawrence, D. A., Frew, E. W., and Pisano, W. J., "Lyapunov Vector Fields for Autonomous UA Flight Control," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1220-1229.   DOI   ScienceOn
7 Kim, M., Kim, Y., and Park, C. G., "Guidance Gain Analysis via Oscillation Motion of Error Dynamics- Based Guidance Law for Stationary Target Observation," 4th European Conference for Aero-Space Sciences, St. Petersburg, Russia, 2011.
8 Kim, M., and Kim, Y., "Error Dynamics-Based Lyapunov Guidance Law for Stationary Target Observation," 18th IFAC World Congress, Milan, Italy, 2011.
9 Kim, K.-S., Kim, Y., "Design of Generalized Conceptual Guidance Law using Aim Angle," Control Engineering Practice, Vol. 12, No. 3, 2004, pp, 291-298.   DOI   ScienceOn
10 Ryoo, C.-K., Cho, H., and Tahk, M.-J., "Optimal Guidance Laws with Terminal Impact Angle Constraint," Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 724-732.   DOI   ScienceOn
11 Lee, J.-I., Jeon, I.-S., and Tahk, M.-J., "Guidance Law to Control Impact Time and Angle," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 1, 2007, pp. 301-310.   DOI   ScienceOn
12 Zhou, D., Sun, S., and Teo, K. L., "Guidance Laws with Finite Time Convergence," Journal of Guidance, Control, and Dynamics, Vol. 32, No. 6, 2009, pp. 1838-1846.   DOI   ScienceOn
13 Yoon, S., Kim, H. J., and Kim, Y., "Spiral Landing Guidance Law Design for Unmanned Aerial Vehicle Net-Recovery," Journal of Aerospace Engineering, Proceedings of the Institution of Mechanical Engineers Part G, Vol. 224, No. 10, 2010, pp. 1081-1096.   DOI   ScienceOn