• Title/Summary/Keyword: Appressorium

Search Result 72, Processing Time 0.021 seconds

Primary Inoculum of Strawberry Anthracnose in Nursing Field (육묘상에서 딸기탄저병의 1차전염원)

  • Kim, Seung-Han;Kim, Dong-Geun;Yoon, Jae-Tak;Choi, Sung-Gook;Lee, Joon-Tak
    • Research in Plant Disease
    • /
    • v.8 no.4
    • /
    • pp.228-233
    • /
    • 2002
  • This experiment was carried out to investigate the primary inoculum of strawberry anthracnose in nursery field. The pathogen, Colletotrichum gloeosporioides was not detected in soil and weeds of nursery field but symptom of anthracnose was developed in mother plants collected from market after incubation in humid chamber, The symptom of anthracnose was expressed in the strawberry plant that reserved for 17 days in field after inoculation by spore suspension but was not observed there after. When inoculated leaves were observed by SEM, only appressoria were observed 7 days after inoculation. So, it is guessed that dissemination of Colletotrichum sp. into nursery held will be by contamination of mother plants, and diagnosis by naked eyes may be impossible because symptom will be not developed if environment is to be adequate to penetration and in case of imperfect penetration after germination, the pathogen remains appressorium to achieve penetration.

Occurrence of Blossom Blight of Petunia Caused by Choanephora cucurbitarum in korea (Choanephora cucurbitarum에 의한 페튜니아 꽃썩음병)

  • 권진혁;강수웅;김정수;박창석
    • Research in Plant Disease
    • /
    • v.7 no.2
    • /
    • pp.112-115
    • /
    • 2001
  • Blossom blight of petunia caused by Choanephora cucurbitarum was found in greenhouses around Jinju area, Gyeongnam province, Korea in April 2001. The disease started with water-soaked lesions on the flower which rapidly withered and was rotten. Calyces developed water-soaked, dark-green lesions, and then were rotten. Whitish mycelia and monosporous sporangiola were produced on the lesions. The fungus isolated from the lesions produced white to pale yellowish brown mycelia with scattered monosporous sporangiola on potato-dextrose agar (PDA) plates. Size of sporangium was 37.2~135.8 um. Monosporous sporangiola were elliptic, fusiform or ovoid, and brown in color and their size was 10.4~22.4$\times$7.4~12.9 um. Sporangiospores were elliptic, fusiform or ovoid in shape, dark brown or brown in color and were 13.7~23.5$\times$8.7~13.8 um in size, and had appendaged appressorium of 3 or more. Zygospores were black, and 40.8~61.5 um in size. The fungus grew on PDA at 15-4$0^{\circ}C$, and optimum temperature was 3$0^{\circ}C$. This is the first report on the blossom blight of petunia caused by C. cucurbitarum in Korea.

  • PDF

Powdery Mildew on Broad Bean (Vicia faba) Caused by Oidium sp. in Korea (Oidium sp.에 의한 잠두 흰가루병 발생)

  • 권진혁;강수웅;박창석
    • Research in Plant Disease
    • /
    • v.7 no.2
    • /
    • pp.120-122
    • /
    • 2001
  • The powdery mildew of broad bean (Vicia faba) extensively occurred in farmers' fields in Changseon-myon, Namhae-gun, Gyeongsangnam-do, Korea in 2001. Both sides of the leaves and stems were covered with white fungal spores and mycelia, and then the leaves and stems colored brown and dark brown and eventually died. Conidia and conidiophores were formed on the lesion. Conidia were cylindric, 29~45$\times$13~23 um (av, 36~18 um) in size and born singly on the conidiophore. Fibrosin bodies were not observed. Conidiophores were straight with 3-4 cylindric cells and 51~100$\times$6~10 um (av.70$\times$8 um) in size. Foot cell was 28~53$\times$7~10 um (av,39$\times$8 um) in size. Appressorium was a lobed type. Cleistothecia were not formed. This is the first report on powdery mildew of broad bean caused by Oidium sp. in Korea.

  • PDF

Biological control of Colletotrichum panacicola on Panax ginseng by Bacillus subtilis HK-CSM-1

  • Ryu, Hojin;Park, Hoon;Suh, Dong-Sang;Jung, Gun Ho;Park, Kyungseok;Lee, Byung Dae
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.215-219
    • /
    • 2014
  • Background: Biological control of plant pathogens using benign or beneficial microorganisms as antagonistic agents is currently considered to be an important component of integrated pest management in agricultural crops. In this study, we evaluated the potential of Bacillus subtilis strain HK-CSM-1 as a biological control agent against Colletotrichum panacicola. Methods: The potential of B. subtilis HK-CSM-1 as a biological control agent for ginseng anthracnose was assessed. C. panacicola was inoculated to ginseng plants and the incidence and severity of disease was assessed to examine the efficacy of the bacterium as a biological control against C. panacicola. Results: Inoculation of Panax ginseng plants with B. subtilis significantly suppressed the number of disease lesions of C. panacicola and was as effective as the chemical fungicide iminoctadine tris(albesilate). The antifungal activity of B. subtilis against C. panacicola was observed on a co-culture medium. Interestingly, treatment with B. subtilis did not significantly affect the diameter of the lesions, suggesting that the mechanism of protection was through the reduction in the incidence of infection related to the initial events of the infection cycle, including penetration and infection via spore germination and appressorium formation rather than by the inhibition of invasive growth after infection. Conclusion: Our results suggest that B. subtilis HK-CSM-1 can be used as an effective and ecologically friendly biological control agent for anthracnose in P. ginseng.

An Investigation of Prepenetration structure by the soybean anthracnose fungus, Glomerella glycines (콩 탄저병균(Glomerella glycines)의 침입 전 구조에 관한 연구)

  • Chung B. K.
    • Korean journal of applied entomology
    • /
    • v.8
    • /
    • pp.25-28
    • /
    • 1969
  • In order to find out the effect of contactor to form appressorial structure of Glomerella glycines, this experiment was carried out by using several contactors such as cover glass. cellophane, vinyl and oil paper respectively. In the case of cover glass placed on a drop of conidial suspension of the fungus which is incubated on water agar for 12 hours, 67.7 percent of appressoria were resulted, whereas no appressorial structure was found in the control. Vinyl was known best physical contactor and cellophane, cover glass and oil paper were fairly good in that order. Effects of temperature, time and relative humidity on the formation of appressoria of G. glycines were similar to each of optimum growth range of temperature and relative humidity $25^{\circ}-30^{\circ}C$ and 70-100 Percent, respectively. In addition, maximum appressorial formation was resulted in the conidial suspension incubated on soybean leaves for 36 hours. No appressorium was found at above $35^{\circ}C$, below R.H. 70 percent and 5 hours incubation.

  • PDF

Parasitic Characteristics of Ampelomyces quisqualis 94013 to Powdery Mildew Fungus of Cucumber (Ampelomyces quisqualis 94013의 오이흰가루병균에 대한 기생적 특성)

  • Lee, Sang-Yeob;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.29 no.2
    • /
    • pp.116-122
    • /
    • 2001
  • An isolate of the prospective hyperparasite, Ampelomyces quisqualis 94013 (AQ94013) was selected for the use of biological control of cucumber powdery mildew caused by Sphaerotheca fuliginea. Examination for the parasitism processes by scanning electron microscopy and light microscopy showed that conidia of AQ49013 germinated on conidia, conidiophores and hyphae of Sphaerotheca fuliginea four hours after inoculation. Appressorium-like structures were developed and attached to the hyphae of S. fuliginea seventeen hours after inoculation. Hyphae of AQ94013 penetrated into hyphae of S. fuliginea twenty-four hours after inoculation. Pycnidia of AQ94013 were produced in the hyphae and the basal part of conidiophores of S. fuliginea fourty four hours after inoculation. The pycnidia of AQ94013 matured foully eight hours after inoculation, and the conidia were discharged from the ostioles of the pycnidia fifty two hours after the inoculation. At the same time, hyphae and conidiophores of S. fuliginea were distorted and died. Also, concentrated culture filtrate and culture filtrate of AQ94013 had not suppressed the cucumber powdery mildew fungus as water treatment. Therefore, mode of action of AQ94013 was assumed to be parasitism on powdery mildew fungi.

  • PDF

Carbamoyl Phosphate Synthase Subunit CgCPS1 Is Necessary for Virulence and to Regulate Stress Tolerance in Colletotrichum gloeosporioides

  • Mushtaq, Aamar;Tariq, Muhammad;Ahmed, Maqsood;Zhou, Zongshan;Ali, Imran;Mahmood, Raja Tahir
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.232-242
    • /
    • 2021
  • Glomerella leaf spot (GLS) is a severe infectious disease of apple whose infective area is growing gradually and thus poses a huge economic threat to the world. Different species of Colletotrichum including Colletotrichum gloeosporioides are responsible for GLS. For efficient GLS control, it is important to understand the mechanism by which the cruciferous crops and C. gloeosporioides interact. Arginine is among one of the several types of amino acids, which plays crucial role in biochemical and physiological functions of fungi. The arginine biosynthesis pathway involved in virulence among plant pathogenic fungi is poorly understood. In this study, CgCPS1 gene encoding carbamoyl phosphate synthase involved in arginine biosynthesis has been identified and inactivated experimentally. To assess the effects of CgCPS1, we knocked out CgCPS1 in C. gloeosporioides and evaluated its effects on virulence and stress tolerance. The results showed that deletion of CgCPS1 resulted in loss of pathogenicity. The ∆cgcps1 mutants showed slow growth rate, defects in appressorium formation and failed to develop lesions on apple leaves and fruits leading to loss of virulence while complementation strain (CgCPS1-C) fully restored its pathogenicity. Furthermore, mutant strains showed extreme sensitivity to high osmotic stress displaying that CgCPS1 plays a vital role in stress response. These findings suggest that CgCPS1 is major factor that mediates pathogenicity in C. gloeosporioides by encoding carbamoyl phosphate that is involved in arginine biosynthesis and conferring virulence in C. gloeosporioides.

Epigenetic Regulation of Fungal Development and Pathogenesis in the Rice Blast Fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.11-11
    • /
    • 2014
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

Morphological and Genetic Characteristics of Colletotrichum gloeosporioides Isolated from Newly Emerging Static-Symptom Anthracnose in Apple

  • Jeon, Yongho;Cheon, Wonsu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.34-34
    • /
    • 2014
  • Filamentous fungi of the genus Colletotrichum (teleomorph, Glomerella) are considered major plant pathogens worldwide. Cereals, legumes, vegetables, and fruit trees may be seriously affected by this pathogen (1). Colletotrichum species cause typical disease symptoms known as anthracnoses, characterized by sunken necrotic tissue, where orange conidial masses are produced. Anthracnose appears in both developing and mature plant tissues (2). We investigated disease occurrence in apple orchards from 2013 to 2014 in northern Gyeongbuk province, Korea. Typical anthracnose with advanced symptoms was observed in all apple orchards studied. Of late, static fruit spot symptoms are being observed in apple orchards. A small lesion, which does not expand further and remains static until the harvesting season, is observed at the beginning of fruit growth period. In our study, static symptoms, together with the typical symptoms, were observed on apples. The isolated fungus was tested for pathogenicity on cv. 'Fuji apple' (fully ripe fruits, unripe fruits, and cross-section of fruits) by inoculating the fruits with a conidial suspension ($10^5$ conidia/ml). In apple inoculated with typical anthracnose fungus, the anthracnose symptoms progressed, and dark lesions with salmon-colored masses of conidia were observed on fruit, which were also soft and sunken. However, in apple inoculated with fungi causing static symptoms, the size of the spots did not increase. Interestingly, the shape and size of the conidia and the shape of the appressoria of both types of fungi were found to be similar. The conidia of the two types of fungi were straight and cylindrical, with an obtuse apex. The culture and morphological characteristics of the conidia were similar to those of C. gloeosporioides (5). The conidia of C. gloeosporioides germinate and form appressoria in response to chemical signals such as host surface wax and the fruitripening hormone ethylene (3). In this study, the spores started to germinate 4 h after incubation with an ethephon suspension. Then, the germ tubes began to swell, and subsequently, differentiation into appressoria with dark thick walls was completed by 8 h. In advanced symptoms, fungal spores of virtually all the appressoria formed primary hyphae within 16 h. However, in the static-symptom fungus spores, no primary hyphae formed by 16 h. The two types of isolates exhibited different growth rates on medium containing apple pectin, Na polypectate, or glucose as the sole carbon. Static-symptom fungi had a >10% reduction in growth (apple pectin, 14.9%; Na polypectate, 27.7%; glucose, 10.4%). The fungal isolates were also genetically characterized by sequencing. ITS regions of rDNA, chitin synthase 1 (CHS1), actin (ACT), and ${\beta}$-tubulin (${\beta}t$) were amplified from isolates using primer pairs ITS 1 and ITS 4 (4), CHS-79F and CHS-354R, ACT-512F and ACT-783R, and T1 and ${\beta}t2$ (5), respectively. The resulting sequences showed 100% identity with sequences of C. gloeosporioides at KC493156, and the sequence of the ${\beta}$t gene showed 100% identity with C. gloeosporioides at JX009557.1. Therefore, sequence data from the four loci studied proves that the isolated pathogen is C. gloeosporioides. We also performed random amplified polymorphic DNA-PCR, which showed clearly differentiated subgroups of C. gloeosporioides genotypes. The clustering of these groups was highly related to the symptom types of the individual strains.

  • PDF

Genetic Stability of Magnaporthe oryzae during Successive Passages through Rice Plants and on Artificial Medium

  • Park, Sook-Young;Chi, Myoung-Hwan;Milgroom, Michael G.;Kim, Hyo-Jung;Han, Seong-Sook;Kang, Seog-Chan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.313-320
    • /
    • 2010
  • Genetic instability of the rice blast fungus Magnaporthe oryzae has been suggested as a major factor underlying the rapid breakdown of host resistance in the field. However, little information is available on the mechanism of genetic instability. In this study, we assessed the stability of repetitive DNA elements and several key phenotypic traits important for pathogenesis after serially transferring two isolates though rice plants and an artificial medium. Using isolate 70-15, we obtained a total of 176 single-spore isolates from 10 successive rounds of culturing on artificial medium. Another 20 isolates were obtained from germ tubes formed at the basal and apical cells of 10 three-celled conidia. Additionally, 60 isolates were obtained from isolate KJ201 after serial transfers through rice plants and an artificial medium. No apparent differences in phenotypes, including mycelial growth, conidial morphologies, conidiation, conidial germination, appressorium formation, and virulence, or in DNA fingerprints using MGR586, MAGGY, Pot2, LINE, MG-SINE and PWL2 as probes were observed among isolates from the same parent isolate. Southern hybridization and sequence analysis of two avirulence genes, AVR-Pita1 and AVR-Pikm, showed that both genes were also maintained stably during 10 successive generations on medium and plants. However, one reversible loss of restriction fragments was found in the telomere-linked helicase gene (TLH1) family, suggesting some telomere regions may be more unstable than the rest of the genome. Taken together, our results suggest that phenotype and genotype of M. oryzae isolates do not noticeably change, at least up to 10 successive generations on a cultural medium and in host plants.