• 제목/요약/키워드: Applied pressure

검색결과 6,708건 처리시간 0.04초

인체의복압 환경개선을 위한 의복압 측정 System 개발에 관한 연구 (Development and Application of Measurement System for Clothing Pressure)

  • 송경헌;김정화;박성하
    • 한국생활과학회지
    • /
    • 제11권3호
    • /
    • pp.307-319
    • /
    • 2002
  • We studied on the development of clothing pressure measurement system for wear comfort of foundations(girdle, brassiere, all-in-one). Measurements of clothing pressure were made on subjects wearing girdles, brassieres, all-in-ones of several type(material, size) using by CPMS(clothing pressure measurement system: Tech-Storm. Co). Wearing experiments have been carried out using nine women in the twenties and six women in the forties. The results obtained are as follows: 1. The clothing pressure applied by girdle was higher in the hard type than the soft type by $5-10gf/cm^2$, also recorded a high clothing pressure at points of waist band line and thigh lateral. 2. Clothing pressure of brassiere with wire was high at the point of underbust line and shoulder strap. Pressure for 40s showed higher than 20s by $6-7gf/cm^2$. 3. The pressures of abdominal part applied by both of girdle and all-in-one were much greater than those of girdle or all-in-one. 4. We demonstrated the adaptability and conformity of the CPMS by inquiring into the clothing pressure of various foundations.

  • PDF

Multiple Orifice Technique for Pressure Drop in Compressible Pipe Flows

  • Kim, Heuy-Dong;Koo, Byoung-Soo;Woo, Sun-Hoon;Setoguchi, Toshiaki
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.459-464
    • /
    • 2000
  • In order to investigate the effectiveness of an orifice system in producing pressure drops and the effect of compressibility on the Pressure drop, computations using the mass-averaged implicit Wavier-Stokes equations were applied to the axisymmetric pipe flows with the operating pressure ratio from 1.5 to 20.0. The standard k-e turbulence model was employed to close the governing equations. Numerical calculations were carried out for some combinations of the multiple orifice configurations. The present CFD data showed that the orifice systems, which have been applied to incompressible flow regime to date, can not be used for the hint operating Pressure ratio flows. The orifice interval did not strongly affect the total pressure drop but the orifice area ratio more than 2.5 led to high pressure drops. The total pressure drop rapidly increased in the range of the operating pressure ratio from 1.5 to 4.0, but it did not depend on the operating pressure ratio over 4.0.

  • PDF

Pressure Changes During Layer Cupping in a Skin Model

  • Shim, Dong Wook;An, Soo Kwang;Lee, Ha Lim;Lee, Jae Yong;Lee, Byung Ryul;Yang, Gi Young
    • Journal of Acupuncture Research
    • /
    • 제38권2호
    • /
    • pp.159-164
    • /
    • 2021
  • Background: Cupping is widely used in Korean medicine, but there is a risk of bacterial infection if the suction pump (used for inducing negative pressure) and the patients' skin are not separated. This study aimed to investigate the effect of layer cupping by comparing the pressure changes between layer cupping and conventional cupping. Methods: To evaluate pressure changes the study was designed with 3 types of conditions applied to a skin model: (1) a Dongbang cup with a manual or motor suction pump (conventional cupping); (2) layer cupping with 2 Dongbang cups; and (3) layer cupping with a cup made by 3D printing and a Dongbang cup. Results: When a manual suction pump was used (conventional cupping), the pressure did not decrease steadily, and in 1 section there was an increase in pressure. When layer cupping was used, the pressure in the lower cup (which would be directly applied to the patient's skin), decreased steadily. Conclusion: In the pressure change graph for layer cupping in this skin model, the pressure in the lower cup (which would be placed on the patient's skin) steadily decreased, and reached equilibrium. Therefore, the layer cupping model may help to reduce the risks of bacterial infection.

의복의 구속성에 관한 연구(III) - 화운데이션의 의복압과 근활동과의 관계를 중심으로 - (Studied on Garment Restraint(III) - Relation between Clothing Pressure and Muscular Activity of Foundation -)

  • 심부자;최선희
    • 한국의류학회지
    • /
    • 제17권2호
    • /
    • pp.197-206
    • /
    • 1993
  • We studied relation between the clothing pressure applied by foundations(waist nipper, girdle, body suit) on the waist of bodies and muscular activity, feeling of tightness. The main results were summerized as follows ; 1. Clothing pressure applied by foundations was high in order of girdle>waist nipper>body suit, also clothing pressure was higher back than front and side, sitting on the chair than standing posture, ventral flection than repose. Individual differences, even if size of body was equal, were shown in clothing pressure applied by foundations with subcutaneous fat's amount in measuring region. 2. The muscular activity of rectus abdominis than obliquus externus abdominis was more affected by foundations in all kinds of postures and motions. Amplitude of electromyogram was high sitting on the chair than standing posture, but there was little difference with motion variation. The wearing girdle strongly affected on the muscular activities of rectus abdominis and obliquus externus abdominis as compared with waist nipper and body suit. 3. The value for feeling of tightness by wearing waist nipper was higher than girdle and body suit. Also the case when sitting on the chair and ventral flection, the value for feeling of tightness was high. When the foundations were on the body, most tightened on the region of the body was anterior abdominal region.

  • PDF

고압주조한 Al-10% Mg 합금의 주조조직 및 기계적 성질에 관한 연구 (A Study on Cast Structure and Mechanical Properties of Al-10% Mg Alloy Solidified Under High Hydraulic Pressure)

  • 정우현;정종연;이종남
    • 한국주조공학회지
    • /
    • 제3권1호
    • /
    • pp.28-36
    • /
    • 1983
  • 본 실험에서는 고정수압하에서 응고한 Al-l0% Mg합금의 조직 및 기계적 성질에 미치는 가압력의 영향을 조사하기 위하여 압력을 $0㎏f/cm^2$, 500$kgf/cm^2$, $1500㎏f/cm^2$$2000㎏f/cm^2$로 변화시키면서 냉각곡선, 조직검사, 기계적시험 및 비중 측정을 하여 얻은 결론은 다음과 같다. 1. 가압력이 증가할수록 합금의 냉각속도는 증가하였다. 2. 기공 및 수축공의 발생은 가압에 의해 억제되었다. 3. 가압력이 증가할수록 dendrite arm spacing은 감소하였다. 4. 기계적 성질 및 비중은 가압력이 증가함에 따라 증가하였다.

  • PDF

취성재료의 펀칭가공을 위한 충격 장치 개발 및 펀칭기구 해석 (Development of Experimental Setup for Impact Punching in Brittle Materials and Analysis of Punching Mechanism)

  • 신형섭;김진한;오상엽
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.629-636
    • /
    • 2001
  • In order to investigate the possibility of impact punching in brittle materials, an experimental setup was developed. In the setup, a long bar as a punch was used to apply the impact load to the specimen plate and measure the applied impact force during the impact punching process. Impact punching tests with various shape of punches were performed in soda-lime glass and silicon wafer under a different level of contact pressure. The damage appearance after the impact punching was examined according to the applied contact pressure. The minimum contact pressure required for a complete punching in glass specimens without development of radial cracks around the punched hole was sought at each condition. The minimum contact pressure increased with increasing the thickness of specimens and decreasing the end radius of punches. The profile of impact forces was measured during the impact punching experiment, and it could explain well the behavior of the punching process in brittle material plates. The measured impact force increased with increasing the contact pressure applied to the plates.

Wavenumber analyses of panel vibrations induced by transonic wall-bounded jet flow from an upstream high aspect ratio rectangular nozzle

  • Hambric, Stephen A.;Shaw, Matthew D.;Campbell, Robert L.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권6호
    • /
    • pp.515-528
    • /
    • 2019
  • The structural vibrations of a flat plate induced by fluctuating wall pressures within wall-bounded transonic jet flow downstream of a high-aspect ratio rectangular nozzle are simulated. The wall pressures are calculated using Hybrid RANS/LES CFD, where LES models the large-scale turbulence in the shear layers downstream of the nozzle. The structural vibrations are computed using modes from a finite element model and a time-domain forced response calculation methodology. At low flow speeds, the convecting turbulence in the shear layers loads the plate in a manner similar to that of turbulent boundary layer flow. However, at high nozzle pressure ratio discharge conditions the flow over the panel becomes transonic, and the shear layer turbulence scatters from shock cells just downstream of the nozzle, generating backward traveling low frequency surface pressure loads that also drive the plate. The structural mode shapes and subsonic and transonic surface pressure fields are transformed to wavenumber space to better understand the nature of the loading distributions and individual modal responses. Modes with wavenumber distributions which align well with those of the pressure field respond strongly. Negative wavenumber loading components are clearly visible in the transforms of the supersonic flow wall pressures near the nozzle, indicating backward propagating pressure fields. In those cases the modal joint acceptances include significant contributions from negative wavenumber terms.

Effect of Pressure on Edge Delamination in Chemical Mechanical Polishing of SU-8 Film on Silicon Wafer

  • Park, Sunjoon;Im, Seokyeon;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.282-287
    • /
    • 2017
  • SU-8 is an epoxy-type photoresist widely used for the fabrication of high-aspect-ratio (HAR) micro-structures in micro-electro-mechanical systems (MEMS). To fabricate highly integrated structures, chemical mechanical polishing (CMP) has emerged as the preferred manufacturing process for planarizing the MEMS structure. In SU-8 CMP, an oxidizer decomposes organic impurities and particles in the CMP slurry remove the chemically reacted surface of SU-8. To fabricate HAR microstructures using the CMP process, the adhesion between SU-8 and substrate material is important to avoid the delamination of the SU-8 film caused by the mechanical-dominant material removal characteristic. In this study, the friction force during the CMP process is measured with a CMP monitoring system to detect the delamination phenomenon and investigate the delamination of the SU-8 film from the silicon substrate under various pressure conditions. The increase in applied pressure causes an increase in the frictional force and wafer-edge stress concentration. The frictional force measurement shows that the friction force changes according to the delamination phenomenon of the SU-8 film, and that it is possible to monitor the delamination phenomenon during the SU-8 CMP process. The delamination at a high applied pressure is explained by the effect of stress distribution and pad deformation. Consequently, it is necessary to control the pressure of polishing, which can avoid the delamination in SU-8 CMP.

Effects of pressure biofeedback application location for subjects with lumbar instability on pelvic rotation and hip joint abductor muscle activity during the Clam exercise.

  • Choi, Yonggil;Lee, Sangyeol
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권2호
    • /
    • pp.90-97
    • /
    • 2021
  • Objective: The purpose of this study was to find out how the back instability during clam exercise (CE) causes changes in pelvic rotation and hip joint abductor muscle activity, and to find out the effects with different methods of application of pressure biofeedback. Design: Comparative study using repeated measures. Methods: Each subjects performed the clam exercise (CE) without pressure biofeedback, the clam exercise with pressure biofeedback applied to the back (CE-PBU to back), and the clam exercise with pressure biofeedback applied to the side (CE-PBU to side). The amount of pelvic rotation was measured using myomotion. And the muscle activity of the muscle gluteus medius and the tensor fasciae latae was measured using EMG device. One-way repeated measures ANOVA followed by the Bonferroni post test were used to compare the EMG activity in each muscle and pelvic rotation angle during the CE, CE-PBU to back, CE-PBU to side. Results: The amounts of pelvic rotation was the lowest in CE-PBU to back (p< 0.05) and the ratio of muscle activity of the muscle gluteus / tensor fasciae latae was the highest in CE-PBU to back (p< 0.05). Conclusions: It is thought that, in order to stabilize the waist-pelvis and increase hip joint muscle strength in subjects with back instability, applying clam exercise with pressure biofeedback applied to the lower back is effective in improving waist-pelvic movements and selectively strengthening the muscle gluteus medius.

Simulation of the Blood Pressure Estimation Using the Artery Compliance Model and Pulsation Waveform Model

  • Jeon, Ahyoung;Ro, Junghoon;Kim, Jaehyung;Baik, Seongwan;Jeon, Gyerok
    • 센서학회지
    • /
    • 제22권1호
    • /
    • pp.38-43
    • /
    • 2013
  • In this study, the artery's compliance model and the pulsation waveform model was proposed to estimate blood pressure without applying HPF (High Pass Filter) on signal measured by the oscillometric method. The method proposed in the study considered two ways of estimating blood pressure. The first method of estimating blood pressure is by comparing and analyzing changes in pulsation waveform's dicrotic notch region during each cardiac period. The second method is by comparing and analyzing morphological changes in the pulsation waveform during each cardiac period, which occur in response to the change in pressure applied on the cuff. To implement these methods, we proposed the compliance model and the pulsation waveform model of the artery based on hemodynamic theory, and then conducted various simulations. The artery model presented in this study only took artery's compliance into account. Then, a pulsation waveform model was suggested, which uses characteristic changes in the pulsation waveform to estimate blood pressure. In addition, characteristic changes were observed in arterial volume by applying artery's pulsation waveform to the compliance model. The pulsation waveform model was suggested to estimate blood pressure using characteristic changes of the pulsation waveform in the arteries. This model was composed of the sum of sine waves and a Fourier's series in combination form up to 10th harmonics components of the sinusoidal waveform. Then characteristic of arterial volume change was observed by inputting pulsation waveform into the compliance model. The characteristic changes were also observed in the pulsation waveform by mapping the arterial volume change in accordance with applied cuff's pressure change to the pulsation waveform's change according to applied pressure changes by cuff. The systolic and diastolic blood pressures were estimated by applying positional change of pulsation waveform's dicrotic notch region.