• Title/Summary/Keyword: Applied exponential smoothing method

Search Result 25, Processing Time 0.02 seconds

Estimation of Smoothing Constant of Minimum Variance and its Application to Industrial Data

  • Takeyasu, Kazuhiro;Nagao, Kazuko
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.44-50
    • /
    • 2008
  • Focusing on the exponential smoothing method equivalent to (1, 1) order ARMA model equation, a new method of estimating smoothing constant using exponential smoothing method is proposed. This study goes beyond the usual method of arbitrarily selecting a smoothing constant. First, an estimation of the ARMA model parameter was made and then, the smoothing constants. The empirical example shows that the theoretical solution satisfies minimum variance of forecasting error. The new method was also applied to the stock market price of electrical machinery industry (6 major companies in Japan) and forecasting was accomplished. Comparing the results of the two methods, the new method appears to be better than the ARIMA model. The result of the new method is apparently good in 4 company data and is nearly the same in 2 company data. The example provided shows that the new method is much simpler to handle than ARIMA model. Therefore, the proposed method would be better in these general cases. The effectiveness of this method should be examined in various cases.

Estimation of Smoothing Constant of Minimum Variance and Its Application to Shipping Data with Trend Removal Method

  • Takeyasu, Kazuhiro;Nagata, Keiko;Higuchi, Yuki
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.4
    • /
    • pp.257-263
    • /
    • 2009
  • Focusing on the idea that the equation of exponential smoothing method (ESM) is equivalent to (1, 1) order ARMA model equation, new method of estimation of smoothing constant in exponential smoothing method is proposed before by us which satisfies minimum variance of forecasting error. Theoretical solution was derived in a simple way. Mere application of ESM does not make good forecasting accuracy for the time series which has non-linear trend and/or trend by month. A new method to cope with this issue is required. In this paper, combining the trend removal method with this method, we aim to improve forecasting accuracy. An approach to this method is executed in the following method. Trend removal by a linear function is applied to the original shipping data of consumer goods. The combination of linear and non-linear function is also introduced in trend removal. For the comparison, monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful especially for the time series that has stable characteristics and has rather strong seasonal trend and also the case that has non-linear trend. The effectiveness of this method should be examined in various cases.

Computation and Smoothing Parameter Selection In Penalized Likelihood Regression

  • Kim Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.743-758
    • /
    • 2005
  • This paper consider penalized likelihood regression with data from exponential family. The fast computation method applied to Gaussian data(Kim and Gu, 2004) is extended to non Gaussian data through asymptotically efficient low dimensional approximations and corresponding algorithm is proposed. Also smoothing parameter selection is explored for various exponential families, which extends the existing cross validation method of Xiang and Wahba evaluated only with Bernoulli data.

Robust Method of Video Contrast Enhancement for Sudden Illumination Changes (급격한 조명 변화에 강건한 동영상 대조비 개선 방법)

  • Park, Jin Wook;Moon, Young Shik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.55-65
    • /
    • 2015
  • Contrast enhancement methods for a single image applied to videos may cause flickering artifacts because these methods do not consider continuity of videos. On the other hands, methods considering the continuity of videos can reduce flickering artifacts but it may cause unnecessary fade-in/out artifacts when the intensity of videos changes abruptly. In this paper, we propose a robust method of video contrast enhancement for sudden illumination changes. The proposed method enhances each frame by Fast Gray-Level Grouping(FGLG) and considers the continuity of videos by an exponential smoothing filter. The proposed method calculates the smoothing factor of an exponential smoothing filter using a sigmoid function and applies to each frame to reduce unnecessary fade-in/out effects. In the experiment, 6 measurements are used for the performance analysis of the proposed method and traditional methods. Through the experiment. it has been shown that the proposed method demonstrates the best quantitative performance of MSSIM and Flickering score and show the adaptive enhancement under sudden illumination change through the visual quality comparison.

Adaptive Exponential Smoothing Method Based on Structural Change Statistics (구조변화 통계량을 이용한 적응적 지수평활법)

  • Kim, Jeong-Il;Park, Dae-Geun;Jeon, Deok-Bin;Cha, Gyeong-Cheon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.165-168
    • /
    • 2006
  • Exponential smoothing methods do not adapt well to unexpected changes in underlying process. Over the past few decades a number of adaptive smoothing models have been proposed which allow for the continuous adjustment of the smoothing constant value in order to provide a much earlier detection of unexpected changes. However, most of previous studies presented ad hoc procedure of adaptive forecasting without any theoretical background. In this paper, we propose a detection-adaptation procedure applied to simple and Holt's linear method. We derive level and slope change detection statistics based on Bayesian statistical theory and present distribution of the statistics by simulation method. The proposed procedure is compared with previous adaptive forecasting models using simulated data and economic time series data.

  • PDF

A Study on Imputing the Missing Values of Continuous Traffic Counts (상시조사 교통량 자료의 결측 보정에 관한 연구)

  • Lee, Sang Hyup;Shin, Jae Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2009-2019
    • /
    • 2013
  • Traffic volumes are the important basic data which are directly used for transportation network planning, highway design, highway management and so forth. They are collected by two types of collection methods, one of which is the continuous traffic counts and the other is the short duration traffic counts. The continuous traffic counts are conducted for 365 days a year using the permanent traffic counter and the short duration traffic counts are conducted for specific day(s). In case of the continuous traffic counts the missing of data occurs due to breakdown or malfunction of the counter from time to time. Thus, the diverse imputation methods have been developed and applied so far. In this study the applied exponential smoothing method, in which the data from the days before and after the missing day are used, is proposed and compared with other imputation methods. The comparison shows that the applied exponential smoothing method enhances the accuracy of imputation when the coefficient of traffic volume variation is low. In addition, it is verified that the variation of traffic volume at the site is an important factor for the accuracy of imputation. Therefore, it is necessary to apply different imputation methods depending upon site and time to raise the reliability of imputation for missing traffic values.

Efficient Anomaly Detection Through Confidence Interval Estimation Based on Time Series Analysis

  • Kim, Yeong-Ju;Jeong, Min-A
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.46-53
    • /
    • 2015
  • This paper suggests a method of real time confidence interval estimation to detect abnormal states of sensor data. For real time confidence interval estimation, the mean square errors of the exponential smoothing method and moving average method, two of the time series analysis method, were compared, and the moving average method with less errors was applied. When the sensor data passes the bounds of the confidence interval estimation, the administrator is notified through alarms. As the suggested method is for real time anomaly detection in a ship, an Android terminal was adopted for better communication between the wireless sensor network and users. For safe navigation, an administrator can make decisions promptly and accurately upon emergency situation in a ship by referring to the anomaly detection information through real time confidence interval estimation.

Changes of the Forest Types by Climate Changes using Satellite imagery and Forest Statistical Data: A case in the Chungnam Coastal Ares, Korea (위성영상과 임상통계를 이용한 충남해안지역의 기후변화에 따른 임상 변화)

  • Kim, Chansoo;Park, Ji-Hoon;Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.523-538
    • /
    • 2011
  • This study analyzes the changes in the surface area of each forest cover, based on temperature data analysis and satellite imagery as the basic methods for the impact assessment of climate change on regional units. Furthermore, future changes in the forest cover are predicted using the double exponential smoothing method. The results of the study have shown an overall increase in annual mean temperature in the studied region since 1990, and an especially increased rate in winter and autumn compared to other seasons. The multi-temporal analysis of the changes in the forest cover using satellite images showed a large decrease of coniferous forests, and a continual increase in deciduous forests and mixed forests. Such changes are attributed to the increase in annual mean temperature of the studied regions. The analysis of changes in the surface area of each forest cover using the statistical data displayed similar tendencies as that of the forest cover categorizing results from the satellite images. Accordingly, rapid changes in forest cover following the increase of temperature in the studied regions could be expected. The results of the study of the forest cover surface using the double exponential smoothing method predict a continual decrease in coniferous forests until 2050. On the contrary, deciduous forests and mixed forests are predicted to show continually increasing tendencies. Deciduous forests have been predicted to increase the most in the future. With these results, the data on forest cover can be usefully applied as the main index for climate change. Further qualitative results are expected to be deduced from these data in the future, compared to the analyses of the relationship between tree species of forest and climate factors.

Prediction of Sales on Some Large-Scale Retailing Types in South Korea

  • Jeong, Dong-Bin
    • Asian Journal of Business Environment
    • /
    • v.7 no.4
    • /
    • pp.35-41
    • /
    • 2017
  • Purpose - This paper aims to examine several time series models to predict sales of department stores and discount store markets in South Korea, while other previous trial has performed sales of convenience stores and supermarkets. In addition, optimal predicted values on the underlying model can be got and be applied to distribution industry. Research design, data, and methodology - Two retailing types, under investigation, are homogeneous and comparable in size based on 86 realizations sampled from January 2010 to February in 2017. To accomplish the purpose of this research, both ARIMA model and exponential smoothing methods are, simultaneously, utilized. Furthermore, model-fit measures may be exploited as important tools of the optimal model-building. Results - By applying Holt-Winters' additive seasonality method to sales of two large-scale retailing types, persisting increasing trend and fluctuation around the constant level with seasonal pattern, respectively, will be predicted from May in 2017 to February in 2018. Conclusions - Considering 2017-2018 forecasts for sales of two large-scale retailing types, it is important to predict future sales magnitude and to produce the useful information for reforming financial conditions and related policies, so that the impacts of any marketing or management scheme can be compared against the do-nothing scenario.

EMD based hybrid models to forecast the KOSPI (코스피 예측을 위한 EMD를 이용한 혼합 모형)

  • Kim, Hyowon;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.525-537
    • /
    • 2016
  • The paper considers a hybrid model to analyze and forecast time series data based on an empirical mode decomposition (EMD) that accommodates complex characteristics of time series such as nonstationarity and nonlinearity. We aggregate IMFs using the concept of cumulative energy to improve the interpretability of intrinsic mode functions (IMFs) from EMD. We forecast aggregated IMFs and residue with a hybrid model that combines the ARIMA model and an exponential smoothing method (ETS). The proposed method is applied to forecast KOSPI time series and is compared to traditional forecast models. Aggregated IMFs and residue provide a convenience to interpret the short, medium and long term dynamics of the KOSPI. It is also observed that the hybrid model with ARIMA and ETS is superior to traditional and other types of hybrid models.