• Title/Summary/Keyword: Applications of Internet Of Things

Search Result 384, Processing Time 0.027 seconds

A Broadband High Gain Planar Vivaldi Antenna for Medical Internet of Things (M-IoT) Healthcare Applications

  • Permanand, Soothar;Hao, Wang;Zaheer Ahmed, Dayo;Falak, Naz;Badar, Muneer;Muhammad, Aamir
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.245-251
    • /
    • 2022
  • In this paper, a high gain, broadband planar vivaldi antenna (PVA) by utilizing a broadband stripline feed is developed for wireless communication for IoT systems. The suggested antenna is designed by attaching a tapered-slot construction to a typical vivaldi antenna, which improves the antenna's radiation properties. The PVA is constructed on a low-cost FR4 substrate. The dimensions of the patch are 1.886λ0×1.42λ0×0.026λ0, dielectric constant Ɛr=4.4, and loss tangent δ=0.02. The width of the feed line is reduced to improve the impedance bandwidth of the antenna. The computed reflection coefficient findings show that the suggested antenna has a 46.2% wider relative bandwidth calculated at a 10 dB return loss. At the resonance frequencies of 6.5 GHz, the studied results show an optimal gain of 5.82 dBi and 85% optimal radiation efficiency at the operable band. The optometric analysis of the proposed structure shows that the proposed antenna can achieve wide enough bandwidth at the desired frequency and hence make the designed antenna appropriate to work in satellite communication and medical internet of things (M-IoT) healthcare applications.

Development of an IoT-Based Dizziness Detection System for VR Applications (VR 애플리케이션을 위한 사물인터넷 기반 어지럼증 검출 시스템 개발)

  • Ko, Euni;Kim, Youngcheon;Park, Hyelee;Jung, Wonseok;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.423-425
    • /
    • 2019
  • Users may experience a sub-type of motion sickness, called cybersickness, when interacting with virtual reality (VR) applications in the state of wearing head mounted display (HMD) devices. Although the root cause of cybersickness is still unclear, it is believed to result from a sensory mismatch between visual and vestibular systems. However, there is a lack of studies developing data collection and analysis systems to measure cybersickness. In this paper, therefore, a system is designed that collects electroencephalography (EEG) and physiological data from a user wearing a VR HMD device through an internet of things (IoT) platform and decides whether a user experiences a symptom of cybersickness, namely dizziness, or not by using a decision threshold. Experimental results showed that the proposed system achieved about 92% accuracy of a dizziness detection when considering 14 participants.

  • PDF

Secure 6LoWPAN Neighbor Discovery Address Registration Protocol (안전한 6LoWPAN Neighbor Discovery 주소 등록 프로토콜)

  • Han, Sang-woo;Park, Chang-seop
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2019
  • 6LoWPAN based on IEEE 802.15.4 is a realistic standard platform for various Internet of Things (IoT) applications. To bootstrap the LoWPAN (Low-power Wireless Personal Area Network), each device must perform 6LoWPAN-ND address registration to assign a unique IPv6 address. Without adequate security mechanisms, 6LoWPAN-ND is vulnerable to a variety of security attacks including corrupted node attacks. Several security mechanisms have been proposed as a supplement to the vulnerability, but the vulnerability exists because it relies solely on IEEE 802.15.4 hop-by-hop security. In this paper, we propose and analyze a vulnerability of 6LoWPAN-ND address registration and a new security mechanism suitable for preventing the attack of damaged node. It also shows that the proposed security mechanism is compatible with the Internet Engineering Task Force (IETF) standard and is more efficient than the mechanism proposed in the IETF 6 lo WG.

Edge-Centric Metamorphic IoT Device Platform for Efficient On-Demand Hardware Replacement in Large-Scale IoT Applications (대규모 IoT 응용에 효과적인 주문형 하드웨어의 재구성을 위한 엣지 기반 변성적 IoT 디바이스 플랫폼)

  • Moon, Hyeongyun;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1688-1696
    • /
    • 2020
  • The paradigm of Internet-of-things(IoT) systems is changing from a cloud-based system to an edge-based system to solve delays caused by network congestion, server overload and security issues due to data transmission. However, edge-based IoT systems have fatal weaknesses such as lack of performance and flexibility due to various limitations. To improve performance, application-specific hardware can be implemented in the edge device, but performance cannot be improved except for specific applications due to a fixed function. This paper introduces a edge-centric metamorphic IoT(mIoT) platform that can use a variety of hardware through on-demand partial reconfiguration despite the limited hardware resources of the edge device, so we can increase the performance and flexibility of the edge device. According to the experimental results, the edge-centric mIoT platform that executes the reconfiguration algorithm at the edge was able to reduce the number of server accesses by up to 82.2% compared to previous studies in which the reconfiguration algorithm was executed on the server.

A Study on the Service Improvement Strategies by Enterprise through the Analysis of Customer Response Reviews in Smart Home Applications : Based on the Classification of Functional Elements and Design Elements of smart Home Usability Values (스마트 홈 어플리케이션의 고객반응리뷰분석을 통한 기업별 서비스개선전략에 대한 연구 : 스마트 홈 사용성 가치의 기능적요소와 디자인적 요소 분류를 바탕으로)

  • Heo, Ji Yeon;Kim, Min Ji;Cha, Kyung Jin
    • Journal of Information Technology Services
    • /
    • v.19 no.4
    • /
    • pp.85-107
    • /
    • 2020
  • The Internet of Things market, a technology that connects the Internet to various things, is growing day by day. Besides, various smart home services using IoT and AI (Artificial Intelligence) are being launched in homes. Related to this, existing smart home-related studies focus primarily on ICT technology, not on what service improvements should be made in customer positions. In this study, we will use smart home application customer review data to classify functional and design elements of smart home usability value and examine the ways customers think of service improvement. For this, LG Electronics and Samsung Electronics" Smart Home application, the main provider of Smart Home in Korea, customer reviews were crawled to conduct a comparative analysis between them. In this study, the review of IoT home-applications was analyzed to find service improvement insights from customer perspective, and related analysis of text mining, social network analysis and Doc2vec was used to efficiently analyze data equivalent to about 16,000 user reviews. Through this research, we hope that related companies effectively seek ways to improve smart home services that reflect customer needs and are expected to help them establish competitive strategies by identifying weaknesses and strengths among competitors.

Base Station Cooperation Scheme for Low-Latency Two-Way Communication (저지연 양방향 통신을 위한 기지국 협력 전송)

  • Kim, Dong Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.751-758
    • /
    • 2020
  • As the application fields using various types of communication, including the Internet of Things, have emerged, the form of communication has been diversified. Some applications require fast feedback and the others continue to send data regardless of whether it is received or not. Transmitting data in one way can be acknowledged by the opposite direction response. These information exchanges form a two-way communication. For applications that need to issue commands remotely, such as network control systems, it is important to give a fast response because the sender decides the next action based on the response from the recipient. In this paper, we propose the base station (BS) cooperation to improve the latency performance of the two-way communication in cellular networks. We design the two-way communication strategy utilizing cooperating BSs with the same direction of traffic as well as bidirectional traffic. We show that the proposed scheme improves the latency performance than the previous works.

Privacy-Preserving Outlier Detection in Healthcare Services (IoT환경에서 프라이버시를 보장하는 의료데이터 이상치 탐색 기법)

  • Lee, Bo Young;Choi, Wonsuk;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1187-1199
    • /
    • 2015
  • Recently, as high-quality sensors are being developed, it is available to conveniently measure any kind of data. Healthcare services are being combined with Internet of things (IoTs). And applications that use user's data which are remotely measured, such as heart rate, blood oxygen level, temperature are emerging. The typical example is applications that find ideal spouse by using a user's genetic information, or indicate the presence or absence of a disease. Such information is closely related to the user's privacy, so biometric information must be protected. That is, service provider must provide the service while preserving user's privacy. In this paper, we propose a scheme which enables privacy-preserving outlier detection in Healthcare Service.

BLE Beacon Based Online Offline Tourism and Solutions for Regional Tourism Activation (지역관광 활성화를 위한 비콘 기반의 온오프라인 관광 솔루션)

  • Ryu, Gab-Sang
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.2
    • /
    • pp.21-26
    • /
    • 2016
  • In this paper, it is possible to update the tourist information in real time, on/off-line tour proposes a solution(BBTS) based on a bluetooth beacon can provide tourist information without the need for wireless data network. BBTS consists of a bluetooth based data of the low-power supply system and the beacons and interoperable smart applications. Data supply system consists of the BLE & Beacon Pairing-based / non-pairing data transmission module with integral hardware. Smart application modules that provide indoor location of users information, internal server module and tourist information collection and information guide around comprised of applications. The proposed BBTS is possible that indoor service tourism tourist demand due to utilizing the beacon technology. Outdoor tourist information is designed to be downloaded to the smartphone receives the information received from the beacon APK file to provide services. BBTS system is expected to make a big impact on the smart tourism services industry.

Mitigation of Phishing URL Attack in IoT using H-ANN with H-FFGWO Algorithm

  • Gopal S. B;Poongodi C
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1916-1934
    • /
    • 2023
  • The phishing attack is a malicious emerging threat on the internet where the hackers try to access the user credentials such as login information or Internet banking details through pirated websites. Using that information, they get into the original website and try to modify or steal the information. The problem with traditional defense systems like firewalls is that they can only stop certain types of attacks because they rely on a fixed set of principles to do so. As a result, the model needs a client-side defense mechanism that can learn potential attack vectors to detect and prevent not only the known but also unknown types of assault. Feature selection plays a key role in machine learning by selecting only the required features by eliminating the irrelevant ones from the real-time dataset. The proposed model uses Hyperparameter Optimized Artificial Neural Networks (H-ANN) combined with a Hybrid Firefly and Grey Wolf Optimization algorithm (H-FFGWO) to detect and block phishing websites in Internet of Things(IoT) Applications. In this paper, the H-FFGWO is used for the feature selection from phishing datasets ISCX-URL, Open Phish, UCI machine-learning repository, Mendeley website dataset and Phish tank. The results showed that the proposed model had an accuracy of 98.07%, a recall of 98.04%, a precision of 98.43%, and an F1-Score of 98.24%.

Software Engineering Principles for the Development of Power-Efficient Mobile IoT Devices (파워 효율이 높은 모바일 IoT 단말 개발을 위한 소프트웨어 공학 원칙)

  • Lee, Hyesun;Lee, Kang Bok;Bang, Hyo-Chan
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.12
    • /
    • pp.762-767
    • /
    • 2015
  • An Internet of Things (IoT) is a system where various "things" are connected to each other via a wired/wireless network, and where information is gathered, processed, and interchanged/shared. One of the important actors in IoT is a mobile IoT device (such as a smartphone or tablet). These devices tend to consume a large amount of power in order to provide various high performance application services; however, as the devices cannot be supplied with power all the time, efficient power management is necessary. Power management of mobile IoT devices involves complex relationships between various entities such as application processors (APs), HW modules inside/outside AP, operating systems, mobile IoT platforms, and applications. In order to develop power-efficient mobile IoT devices, a method is needed to systematically analyze these relationships and manage power based on a clear understanding of them. To address this problem, software engineering principles for the development of power-efficient mobile IoT devices are presented in this paper. The feasibility of the proposed principles have been validated in the domain of smartphone camera power management.