• Title/Summary/Keyword: Application Software

Search Result 3,816, Processing Time 0.041 seconds

Enhanced Sound Signal Based Sound-Event Classification (향상된 음향 신호 기반의 음향 이벤트 분류)

  • Choi, Yongju;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.5
    • /
    • pp.193-204
    • /
    • 2019
  • The explosion of data due to the improvement of sensor technology and computing performance has become the basis for analyzing the situation in the industrial fields, and various attempts to detect events based on such data are increasing recently. In particular, sound signals collected from sensors are used as important information to classify events in various application fields as an advantage of efficiently collecting field information at a relatively low cost. However, the performance of sound-event classification in the field cannot be guaranteed if noise can not be removed. That is, in order to implement a system that can be practically applied, robust performance should be guaranteed even in various noise conditions. In this study, we propose a system that can classify the sound event after generating the enhanced sound signal based on the deep learning algorithm. Especially, to remove noise from the sound signal itself, the enhanced sound data against the noise is generated using SEGAN applied to the GAN with a VAE technique. Then, an end-to-end based sound-event classification system is designed to classify the sound events using the enhanced sound signal as input data of CNN structure without a data conversion process. The performance of the proposed method was verified experimentally using sound data obtained from the industrial field, and the f1 score of 99.29% (railway industry) and 97.80% (livestock industry) was confirmed.

Social Big Data-based Co-occurrence Analysis of the Main Person's Characteristics and the Issues in the 2016 Rio Olympics Men's Soccer Games (소셜 빅데이터 기반 2016리우올림픽 축구 관련 이슈 및 인물에 대한 연관단어 분석)

  • Park, SungGeon;Lee, Soowon;Hwang, YoungChan
    • 한국체육학회지인문사회과학편
    • /
    • v.56 no.2
    • /
    • pp.303-320
    • /
    • 2017
  • This paper seeks to better understand the focal issues and persons related to Rio Olympic soccer games through social data science and analytics. This study collected its data from online news articles and comments specific to KOR during the Olympic football games. In order to investigate the public interests for each game and target persons, this study performed the co-occurrence words analysis. Then after, the study applied the NodeXL software to perform its visualization of the results. Through this application and process, the study found several major issues during the Rio Olympic men's football game including the following: the match between KOR and PIJ, KOR player Heungmin Son, commentator Young-Pyo Lee, sportscaster Woo-Jong Jo. The study also showed the general public opinion expressed positive words towards the South Korean national football team during the Rio Olympics, though there existed negative words as well. Furthermore the study revealed positive attitude towards the commentators and casters. In conclusion, the way to increase the public's interest in big sporting events can be achieved by providing the following: contents that include various professional sports analysis, a capable domain expert with thorough preparation, a commentator and/or caster with artistic sense as well as well-spoken, explanatory power and so on. Multidisciplinary research combined with sports science, social science, information technology and media can contribute to a wide range of theoretical studies and practical developments within the sports industry.

A Study on the Application of Cybersecurity by Design of Critical Infrastructure (주요기반시설의 사전예방적보안(Cybersecurity by Design) 적용 방안에 관한 연구)

  • YOO, Jiyeon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.674-681
    • /
    • 2021
  • Cyber attacks targeting critical infrastructure are on the rise. Critical infrastructure is defined as core infrastructures within a country with a high degree of interdependence between the different structures; therefore, it is difficult to sufficiently protect it using outdated cybersecurity techniques. In particular, the distinction between the physical and logical risks of critical infrastructure is becoming ambiguous; therefore, risk management from a comprehensive perspective must be implemented. Accordingly, as a means of further actively protecting critical infrastructure, major countries have begun to apply their security and cybersecurity systems by design, as a more expanded concept is now being considered. This proactive security approach (CSbD, Cybersecurity by Design) includes not only securing the stability of software (SW) safety design and management, but also physical politics and device (HW) safety, precautionary and blocking measures, and overall resilience. It involves a comprehensive security system. Therefore, this study compares and analyzes security by design measures towards critical infrastructure that are leading the way in the US, Europe, and Singapore. It reflects the results of an analysis of optimal cybersecurity solutions for critical infrastructure. I would like to present a plan for applying by Design.

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Deep Learning Description Language for Referring to Analysis Model Based on Trusted Deep Learning (신뢰성있는 딥러닝 기반 분석 모델을 참조하기 위한 딥러닝 기술 언어)

  • Mun, Jong Hyeok;Kim, Do Hyung;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-142
    • /
    • 2021
  • With the recent advancements of deep learning, companies such as smart home, healthcare, and intelligent transportation systems are utilizing its functionality to provide high-quality services for vehicle detection, emergency situation detection, and controlling energy consumption. To provide reliable services in such sensitive systems, deep learning models are required to have high accuracy. In order to develop a deep learning model for analyzing previously mentioned services, developers should utilize the state of the art deep learning models that have already been verified for higher accuracy. The developers can verify the accuracy of the referenced model by validating the model on the dataset. For this validation, the developer needs structural information to document and apply deep learning models, including metadata such as learning dataset, network architecture, and development environments. In this paper, we propose a description language that represents the network architecture of the deep learning model along with its metadata that are necessary to develop a deep learning model. Through the proposed description language, developers can easily verify the accuracy of the referenced deep learning model. Our experiments demonstrate the application scenario of a deep learning description document that focuses on the license plate recognition for the detection of illegally parked vehicles.

Creation of the dental virtual patients with dynamic occlusion and its application in esthetic dentistry (심미치의학 영역에서 동적 교합을 나타내는 가상 환자의 형성을 통한 전치부 보철 수복 증례)

  • An, Se-Jun;Shin, Soo-Yeon;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.222-230
    • /
    • 2022
  • Digital technology is gradually expanding its field and has a great influence on various fields of dentistry. Recently in digital dentistry, the importance of superimposing various 3-dimensional (3D) image data is emerging, in order to utilize gathered data effectively for diagnosis and prosthesis fabrication. Integrating data from facial scans, intraoral scans, and mandibular movement recordings can create a virtual patient. A virtual patient is formed by integrating digital 3D diagnostic data such as intraoral and extraoral soft tissues, residual dentition, and dynamic occlusion, and the results of prosthetic treatment can be evaluated virtually. The patients in this case report were a 37-year-old female whose chief complaint is that the appearance of the existing prosthesis was distorted and a 55-year-old female patient whose anterior prosthesis needed to be refabricated after the endodontic treatment. 3D facial scans were obtained from each patient, and the patient's mandibular movements were recorded using ARCUS Digma 2 (KaVo Dental GmbH, Biberach an der Riss, Germany). The collected data were integrated on computer-aided design (CAD) software (Exocad dental CAD; exocad GmbH, Darmstadt, Germany) and transferred to a virtual articulator to create a digital virtual patient. The temporary fixed prostheses were designed, restored, and evaluated, and it was reflected into the final restorations. With the aid of the virtual dental patient, accuracy and predictability could be increased throughout treatment, simplifying the occlusal adjustment and clinical evaluation with improved esthetic outcomes.

Structural Stability Analysis of Medical Waste Sterilization Shredder (의료폐기물 멸균분쇄용 파쇄기의 구조적 안정성 분석)

  • Azad, Muhammad Muzammil;Kim, Dohoon;Khalid, Salman;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.409-415
    • /
    • 2021
  • Medical waste management is becoming increasingly important, specifically in light of the current COVID-19 pandemic, as hospitals, clinics, quarantine centers, and medical research institutes are generating tons of medical waste every day. Previously, a traditional incineration process was utilized for managing medical waste, but the lack of landfill sites, and accompanying environmental concerns endanger public health. Consequently, an innovative sterilization shredding system was developed to resolve this problem. In this research, we focused on the design and numerical analysis of a shredding system for hazardous and infectious medical waste, to establish its operational performance. The shredding machine's components were modeled in a CAD application, and finite element analysis (FEA) was conducted using ABAQUS software. Static, fatigue, and dynamic loading conditions were used to analyze the structural stability of the cutting blade. The blade geometry proved to be effective based on the cutting force applied to shred medical waste. The dynamic stability of the structure was verified using modal analysis. Furthermore, an S-N curve was generated using a high cycle fatigue study, to predict the expected life of the cutting blade. Resultantly, an appropriate shredder system was devised to link with a sterilization unit, which could be beneficial in reducing the volume of medical waste and disposal time, thereof, thus eliminating environmental issues, and potential health hazards.

Calculating the Mooring Force of a Large LNG Ship based on OCIMF Mooring Equipment Guidelines (OCIMF 계류설비지침 기반 대형 LNG선박 계류력 계산)

  • Wang, Jian;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.594-600
    • /
    • 2022
  • When a large liquefied natural gas (LNG) carrier is anchored at a coastal terminal, calculations on mooring forces of mooring cables induced by environmental loads such as strong winds and currents are needed to secure mooring safety. The advantages and disadvantages of several existing mooring force calculation methods are compared and analyzed with their application conditions. Resultingly, mooring equipment guidelines of the Oil Companies International Marine Forum (OCIMF) are chosen as the computational method for this study. In this paper, the mooring forces of a large LNG carrier with spectrum was calculated using the OCIMF mooring equipment guidelines. The calculation shows similar maximum forces resulted from the calculation using experiment data of a wind tunnel test. To verify the results, OPTIMOOR, a dedicated mooring force calculation software, is used to calculate the same mooring conditions. The results of both calculations show that the computational method recommended by OCIMF is safe and reliable. OPTIMOOR calculates more detailed tensile force of each mooring cable. Thus, the calculation on mooring forces of mooring cables of a large LNG carrier using OCIMF mooring equipment guidelines is verified as an applicable and safe method.

DB-Based Feature Matching and RANSAC-Based Multiplane Method for Obstacle Detection System in AR

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.49-55
    • /
    • 2022
  • In this paper, we propose an obstacle detection method that can operate robustly even in external environmental factors such as weather. In particular, we propose an obstacle detection system that can accurately inform dangerous situations in AR through DB-based feature matching and RANSAC-based multiplane method. Since the approach to detecting obstacles based on images obtained by RGB cameras relies on images, the feature detection according to lighting is inaccurate, and it becomes difficult to detect obstacles because they are affected by lighting, natural light, or weather. In addition, it causes a large error in detecting obstacles on a number of planes generated due to complex terrain. To alleviate this problem, this paper efficiently and accurately detects obstacles regardless of lighting through DB-based feature matching. In addition, a criterion for classifying feature points is newly calculated by normalizing multiple planes to a single plane through RANSAC. As a result, the proposed method can efficiently detect obstacles regardless of lighting, natural light, and weather, and it is expected that it can be used to secure user safety because it can reliably detect surfaces in high and low or other terrains. In the proposed method, most of the experimental results on mobile devices reliably recognized indoor/outdoor obstacles.

A research on the Construction and Sharing of Authority Record-focusing on the Case of Social Networks and Archival Context Project (전거레코드 구축 및 공유에 관한 연구 SNAC 프로젝트 사례를 중심으로)

  • Lee, Eun Yeong
    • The Korean Journal of Archival Studies
    • /
    • no.71
    • /
    • pp.49-89
    • /
    • 2022
  • This study suggests the necessity and domestic application plan a national authority database that promotes an integrated access, richer search, and understanding of historical information sources and archival resources distributed among cultural heritage institutions through the "Social Networks and Archive Context" project case. As the SNAC project was transformed into an international cooperative organization led by NARA, it was possible to secure a sustainable operating system and realize cooperative authority control. In addition, SNAC authority records have the characteristics of providing richer contextual information about life and history and social and intellectual network information compared to libraries. Through case analysis, First, like SNAC, a cooperative body led by the National Archives and having joint ownership of the National Library of Korea should lead the development and expand the scope of participating institutions. Second, in the cooperative method, take a structure in which divisions are made for each field with special strengths, but the main decision-making is made through the administrative team in which the two organizations participate. Third, development of scalable open source software that can collect technical information in various formats when constructing authority data, designing with the structure and elements of archival authority records, designing functions to control the quality of authority records, and building user-friendly interfaces and the need for a platform design reflecting content elements.