A Study on Promoting Performing Art with Robot Actor : Focusing on EveR (로봇 배우를 활용한 공연예술 활성화 방안 연구 : '에버' 중심으로)
-
- (The) Research of the performance art and culture
- /
- no.22
- /
- pp.371-411
- /
- 2011
-
In the twenty first century of rapid cultural change performing art requires new mode of expression based on imaginative power and creativity as well as establishing its own identity. The modern technological environment support this with advanced technology and bring about the expansion of reason from new experience. The introduction of digital media on artistic expression in particular, expands the physical ability of human body which is the main subject of performing art. A virtual body from digital technology is freed from physical boundaries and goes over space and time. It also suggests the possibility of new mode of communication with audience. This study aims at examining the subject of performing art and its digitalized movement focusing on EveR, the world's first professional robot actor. The robot actor which came on stage according to the new expression medium, a digital body, stands in need not only of technological value but also of cultural and artistic application for expression in art. In this endeavor to meet the demand, this study examines the development process and function of 'EveR' the robot actor. Also it searches into the performance of Ever which replaced human being as well as the historical significance of the title:the world's first. To be more specific, there is a example research on two performances:a pansori play "EveR is simply stunning(2009)" and children's play "The Robot Princess and Seven Dwarfs(2009)." Through this example research, it is enabled to anticipate the influence of robot actors on performing arts and to search for the better way of them to evolve. Furthermore, it aims at finding ways to create high value through promoting robot actors to be familiar to the public as well as supporting them to become active cultural contents. The performance with robotic technology is one of the artistic experiment that may cause the change of the future of performing art by actualizing technological imagination together with human body and machinery. As a consequence, it is expected that the meeting of performing art and robotic technology gives positive influence on activating performing art as one of the integrated cultural phenomenon which satisfies the taste of modern era. Moreover, this study may also be the beginning of the expansion of performing art to stretch to diverse field.
Almost all of the water from agricultural dams located to the upper of the Yeongsan river is supplied as irrigation water for farmland and thus is not discharged to the main stream of the river. Also, most of the irrigation water does not return to the river after use, adding to the lack of flow in the main stream. As a result, the water quality and aquatic health of the river have become the poorest among the four major rivers in Korea. Therefore, in this study, several strategies for water quality improvement of the river were developed considering pollution reduction and flow rate increase, and their effect analysis was performed using a water quality model. The results of this study showed that the target water quality of the Yeongsan river could be achieved if flow increase strategies (FISs) are intensively pursued in parallel with pollution reduction. The reason is because the water quality of the river has been steadily improved through pollution reduction but this method is now nearing the limit. In addition, rainfall-related FISs such as dam construction and water distribution adjustment may be less effective or lost if a megadrought continues due to climate change and then rainfall does not occur for a long time. Therefore, in the future, if the application conditions for the FISs are similar, the seawater desalination facility, which is independent of rainfall, should be considered as the priority installation target among the FISs. The reason is that seawater desalination facilities can replace the water supply function of dams, which are difficult to newly build in Korea, and can be useful as a climate change adaptation facility by preventing water-related disasters in the event of a long-term megadrought.
The advent of digital media has facilitated easy access for adolescents to environments conducive to the purchase of narcotics. In particular, there's an increasing trend in the purchase and consumption of narcotics mediated through Social Network Services (SNS) and messenger services. Adolescents, sensitive to such environments, are at risk of experiencing neurological and mental health issues due to narcotic addiction, increasing their exposure to criminal activities, hence necessitating national-level management and support. Consequently, the quest for sustainable treatment methods for adolescents exposed to narcotics emerges as a critical challenge. In the context of high relapse rates in narcotic addiction, the necessity for cost-effective and user-friendly treatment programs is emphasized. This study conducts a literature review aimed at utilizing digital platforms to create an environment where adolescents can voluntarily participate, focusing on the development of therapeutic content through art. Specifically, it reviews societal perceptions and treatment statuses of adolescent drug addiction, analyzes the impact of narcotic addiction on adolescent brain activity and cognitive function degradation, and explores approaches for developing digital therapeutics to promote the rehabilitation of the addicted brain through analysis of precedential case studies. Moreover, the study investigates the benefits that the integration of digital therapeutic approaches and art therapy can provide in the treatment process and proposes the possibility of enhancing therapeutic effects through various treatment programs such as drama therapy, music therapy, and art therapy. The application of art therapy methods is anticipated to offer positive effects in terms of tool expansion, diversification of expression, data acquisition, and motivation. Through such approaches, an enhancement in the effectiveness of treatments for adolescent narcotic addiction is anticipated. Overall, this study undertakes foundational research for the development of digital therapeutics and related applications, offering economically viable and sustainable treatment options in consideration of the societal context of adolescent narcotic addiction.
Purpose To investigate the MRI markers for the prediction of amyloid β (Aβ)-positivity in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and to evaluate the differences in MRI markers between Aβ-positive (Aβ [+]) and -negative groups using the machine learning (ML) method. Materials and Methods This study included 139 patients with MCI and AD who underwent amyloid PET-CT and brain MRI. Patients were divided into Aβ (+) (n = 84) and Aβ-negative (n = 55) groups. Visual analysis was performed with the Fazekas scale of white matter hyperintensity (WMH) and cerebral microbleeds (CMB) scores. The WMH volume and regional brain volume were quantitatively measured. The multivariable logistic regression and ML using support vector machine, and logistic regression were used to identify the best MRI predictors of Aβ-positivity. Results The Fazekas scale of WMH (p = 0.02) and CMB scores (p = 0.04) were higher in Aβ (+). The volumes of hippocampus, entorhinal cortex, and precuneus were smaller in Aβ (+) (p < 0.05). The third ventricle volume was larger in Aβ (+) (p = 0.002). The logistic regression of ML showed a good accuracy (81.1%) with mini-mental state examination (MMSE) and regional brain volumes. Conclusion The application of ML using the MMSE, third ventricle, and hippocampal volume is helpful in predicting Aβ-positivity with a good accuracy.
Purpose: This study aimed to develop a four-hour food additive education program for elementary school students to provide them with accurate information on food additives. Methods: A survey was conducted among 133 elementary school students living in Gyeonggi Province to identify the level of food additive awareness. A four-hour food additive education program and educational materials (PPT, activity sheets, and teacher guidelines) were developed based on the results of the food additive awareness survey. The developed educational programs were based on the Theoretical Model of Stages of Behavior Change. An elementary school nutrition teacher conducted a pilot education for 83 elementary school students to evaluate the feasibility of the developed education program. A survey was conducted to evaluate the effectiveness and satisfaction of the pilot education program. Results: The results of the Food Additive Awareness Survey showed that only 42.1% of people were aware of food additives; 46.3% wanted to know more about food additives, and 54.3% required food additive education. Food coloring (44.7%) and artificial sweeteners (18.7%) were the most common food additives of interest. What they wanted to know about food additives was the safety of food additives (36.8%) and the role and function of food additives (20.3%). After the pilot training on food additives, the level of awareness of food additives was improved significantly, and the percentage of participants who recognized the need for food additive education and promotion increased. According to the satisfaction survey of the food additives education, the interest, understanding, real-life application, learning method, and content amount were approximately 90%. Conclusion: The educational program developed through this study will change the negative perceptions of food additives in elementary school students to a positive one. It will do so by helping nutrition educators educate students on this important subject.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
With the issuance of one-week fine dust emergency reduction measures in March 2019, the public's anxiety about fine dust is increasingly growing. In order to assess the application of air purifying plant-based bio-filters to public facilities, this study presented a method for measuring pollutant reduction effects by creating an indoor environment for continuous discharge of particle pollutants and conducted basic studies to verify whether indoor air quality has improved through the system. In this study conducted in a lecture room in spring, the background concentration was created by using mosquito repellent incense as a pollutant one hour before monitoring. Then, according to the schedule, the fine dust reduction capacity was monitored by irrigating for two hours and venting air for one hour. PM10, PM2.5, and temperature & humidity sensors were installed two meters front of the bio-filters, and velocity probes were installed at the center of the three air vents to conduct time-series monitoring. The average face velocity of three air vents set up in the bio-filter was 0.38±0.16 m/s. Total air-conditioning air volume was calculated at 776.89±320.16㎥/h by applying an air vent area of 0.29m×0.65m after deducing damper area. With the system in operation, average temperature and average relative humidity were maintained at 21.5-22.3℃, and 63.79-73.6%, respectively, which indicates that it satisfies temperature and humidity range of various conditions of preceding studies. When the effects of raising relatively humidity rapidly by operating system's air-conditioning function are used efficiently, it would be possible to reduce indoor fine dust and maintain appropriate relative humidity seasonally. Concentration of fine dust increased the same in all cycles before operating the bio-filter system. After operating the system, in cycle 1 blast section (C-1, β=-3.83, β=-2.45), particulate matters (PM10) were lowered by up to 28.8% or 560.3㎍/㎥ and fine particulate matters (PM2.5) were reduced by up to 28.0% or 350.0㎍/㎥. Then, the concentration of find dust (PM10, PM2.5) was reduced by up to 32.6% or 647.0㎍/㎥ and 32.4% or 401.3㎍/㎥ respectively through reduction in cycle 2 blast section (C-2, β=-5.50, β=-3.30) and up to 30.8% or 732.7㎍/㎥ and 31.0% or 459.3㎍/㎥ respectively through reduction in cycle 3 blast section (C-3, β=5.48, β=-3.51). By referring to standards and regulations related to the installation of vegetation bio-filters in public facilities, this study provided plans on how to set up objective performance evaluation environment. By doing so, it was possible to create monitoring infrastructure more objective than a regular lecture room environment and secure relatively reliable data.
The aim of our research was to apply experimental design methodology in the optimization condition of Photo-Fenton oxidation of the residual livestock wastewater after the coagulation process. The reactions of Photo-Fenton oxidation were mathematically described as a function of parameters amount of Fe(II)(
Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is