DOI QR코드

DOI QR Code

Prediction of Amyloid β-Positivity with both MRI Parameters and Cognitive Function Using Machine Learning

뇌 MRI와 인지기능평가를 이용한 아밀로이드 베타 양성 예측 연구

  • Hye Jin Park (Department of Radiology, Hanyang University Hospital, Hanyang University College of Medicine) ;
  • Ji Young Lee (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Jin-Ju Yang (Department of Biomedical Engineering, Hanyang University College of Medicine) ;
  • Hee-Jin Kim (Department of Neurology, Hanyang University Hospital, Hanyang University College of Medicine) ;
  • Young Seo Kim (Department of Neurology, Hanyang University Hospital, Hanyang University College of Medicine) ;
  • Ji Young Kim (Department of Nuclear Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine) ;
  • Yun Young Choi (Department of Nuclear Medicine, Hanyang University Hospital, Hanyang University College of Medicine)
  • 박혜진 (한양대학교 의과대학 한양대학교병원 영상의학과) ;
  • 이지영 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 양진주 (한양대학교 공과대학 바이오메디컬공학과) ;
  • 김희진 (한양대학교 의과대학 한양대학교병원 신경과) ;
  • 김영서 (한양대학교 의과대학 한양대학교병원 신경과) ;
  • 김지영 (한양대학교 의과대학 구리한양대학교병원 핵의학과) ;
  • 최윤영 (한양대학교 의과대학 한양대학교병원 핵의학과)
  • Received : 2022.06.02
  • Accepted : 2022.10.02
  • Published : 2023.05.01

Abstract

Purpose To investigate the MRI markers for the prediction of amyloid β (Aβ)-positivity in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and to evaluate the differences in MRI markers between Aβ-positive (Aβ [+]) and -negative groups using the machine learning (ML) method. Materials and Methods This study included 139 patients with MCI and AD who underwent amyloid PET-CT and brain MRI. Patients were divided into Aβ (+) (n = 84) and Aβ-negative (n = 55) groups. Visual analysis was performed with the Fazekas scale of white matter hyperintensity (WMH) and cerebral microbleeds (CMB) scores. The WMH volume and regional brain volume were quantitatively measured. The multivariable logistic regression and ML using support vector machine, and logistic regression were used to identify the best MRI predictors of Aβ-positivity. Results The Fazekas scale of WMH (p = 0.02) and CMB scores (p = 0.04) were higher in Aβ (+). The volumes of hippocampus, entorhinal cortex, and precuneus were smaller in Aβ (+) (p < 0.05). The third ventricle volume was larger in Aβ (+) (p = 0.002). The logistic regression of ML showed a good accuracy (81.1%) with mini-mental state examination (MMSE) and regional brain volumes. Conclusion The application of ML using the MMSE, third ventricle, and hippocampal volume is helpful in predicting Aβ-positivity with a good accuracy.

목적 경도인지장애와 알츠하이머 치매 환자에서 아밀로이드베타 양성을 예측할 수 있는 MRI 특징을 알아보고 머신러닝으로 아밀로이드베타 양성 예측 모형의 성능을 알아보고자 하였다. 대상과 방법 후향적 및 단면조사연구로 경도인지장애와 알츠하이머 치매 총 139명의 환자를 대상으로 하였다. 이들은 모두 뇌 MRI와 아밀로이드 PET-CT를 시행하였다. 대상자는 아밀로이드 베타 양성군(n = 84)과 아밀로이드 베타 음성군(n = 55)으로 분류하였다. 시각적 분석으로는 뇌백질 고신호 병변의 Fazekas 척도와 뇌미세출혈 개수를 시행하였다. 정량분석으로 뇌백질 고신호 병변의 부피와 국소뇌부피를 측정하였다. 다중 로지스틱 회귀분석과 머신러닝 기법으로 아밀로이드베타 양성을 가장 잘 예측할 수 있는 MRI 특징을 확인하였다. 결과 시각적분석에서 아밀로이드베타 양성군은 뇌백질 고신호 병변의 Fazekas 척도(p = 0.02)와 뇌미세출혈 개수(p = 0.04)가 유의미하게 높았다. 해마, 내후각피질, 설전부의 국소뇌부피들은 아밀로이드베타 양성군에서 유의미하게 작았다(p < 0.05). 제3뇌실(p = 0.002)의 부피는 아밀로이드베타 양성군에서 유의미하게 컸다. 간이 정신 상태 검사와 국소뇌부피를 이용하여 머신러닝기법을 이용했을 때 좋은 정확도를 보였다(81.1%). 결론 간이 정신 상태 검사, 제3뇌실과 해마 부피를 이용한 머신러닝의 적용은 아밀로이드베타 양성을 예측하는데 활용될 수 있다.

Keywords

References

  1. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 2016;87:539-547 
  2. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement 2018;14:535-562 
  3. Marcus C, Mena E, Subramaniam RM. Brain PET in the diagnosis of Alzheimer's disease. Clin Nucl Med 2014;39:e413-e422 
  4. Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Nagren K, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology 2009;73:754-760 
  5. Tosun D, Schuff N, Mathis CA, Jagust W, Weiner MW; Alzheimer's Disease NeuroImaging Initiative. Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment. Brain 2011;134(Pt 4):1077-1088 
  6. Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM, van Berckel BN, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 2015;313:1939-1950 
  7. Wolk DA, Price JC, Saxton JA, Snitz BE, James JA, Lopez OL, et al. Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol 2009;65:557-568 
  8. Landau SM, Horng A, Fero A, Jagust WJ; Alzheimer's and MCI. Neurology 2016;86:1377-1385 
  9. Jack CR Jr. Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology 2012;263:344-361 
  10. Kandel BM, Avants BB, Gee JC, McMillan CT, Erus G, Doshi J, et al. White matter hyperintensities are more highly associated with preclinical Alzheimer's disease than imaging and cognitive markers of neurodegeneration. Alzheimers Dement (Amst) 2016;4:18-27 
  11. Rauchmann BS, Ghaseminejad F, Mekala S, Perneczky R; Alzheimerr's Disease Neuroimaging Initiative. Cerebral microhemorrhage at MRI in mild cognitive impairment and early alzheimer disease: association with tau and amyloid β at PET imaging. Radiology 2020;296:134-142 
  12. Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, et al. Current applications and future impact of machine learning in radiology. Radiology 2018;288:318-328 
  13. Jung YH, Lee H, Kim HJ, Na DL, Han HJ, Jang H, et al. Prediction of amyloid β PET positivity using machine learning in patients with suspected cerebral amyloid angiopathy markers. Sci Rep 2020;10:18806 
  14. Kang SH, Cheon BK, Kim JS, Jang H, Kim HJ, Park KW, et al. Machine learning for the prediction of amyloid positivity in amnestic mild cognitive impairment. J Alzheimers Dis 2021;80:143-157 
  15. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:263-269 
  16. Sabri O, Seibyl J, Rowe C, Barthel H. Beta-amyloid imaging with florbetaben. Clin Transl Imaging 2015;3:13-26 
  17. Gordon BA, Najmi S, Hsu P, Roe CM, Morris JC, Benzinger TL. The effects of white matter hyperintensities and amyloid deposition on Alzheimer dementia. Neuroimage Clin 2015;8:246-252 
  18. Graff-Radford J, Lesnick T, Rabinstein AA, Gunter J, Aakre J, Przybelski SA, et al. Cerebral microbleed incidence, relationship to amyloid burden: the Mayo clinic study of aging. Neurology 2020;94:e190-e199 
  19. Linn J, Halpin A, Demaerel P, Ruhland J, Giese AD, Dichgans M, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 2010;74:1346-1350 
  20. Yamada M. Cerebral amyloid angiopathy: emerging concepts. J Stroke 2015;17:17-30 
  21. Suh CH, Shim WH, Kim SJ, Roh JH, Lee JH, Kim MJ, et al. Development and validation of a deep learning-based automatic brain segmentation and classification algorithm for Alzheimer disease using 3D T1-weighted volumetric images. AJNR Am J Neuroradiol 2020;41:2227-2234 
  22. Jiang J, Liu T, Zhu W, Koncz R, Liu H, Lee T, et al. UBO detector - A cluster-based, fully automated pipeline for extracting white matter hyperintensities. Neuroimage 2018;174:539-549 
  23. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in python. J Mach Learn Res 2011;12:2825-2830 
  24. Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, et al. Machine learning for neuroimaging with scikit-learn. Front Neuroinform 2014;8:14 
  25. Chu C, Hsu AL, Chou KH, Bandettini P, Lin C; Alzheimer's Disease Neuroimaging Initiative. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 2012;60:59-70 
  26. Nguyen DT, Ryu S, Qureshi MNI, Choi M, Lee KH, Lee B. Hybrid multivariate pattern analysis combined with extreme learning machine for Alzheimer's dementia diagnosis using multi-measure rs-fMRI spatial patterns. PLoS One 2019;14:e0212582 
  27. Kang KM, Sohn CH, Byun MS, Lee JH, Yi D, Lee Y, et al. Prediction of amyloid positivity in mild cognitive impairment using fully automated brain segmentation software. Neuropsychiatr Dis Treat 2020;16:1745-1754 
  28. Kim JP, Kim J, Jang H, Kim J, Kang SH, Kim JS, et al. Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach. Sci Rep 2021;11:6954 
  29. Koivunen J, Scheinin N, Virta JR, Aalto S, Vahlberg T, Nagren K, et al. Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology 2011;76:1085-1090 
  30. Nestor SM, Rupsingh R, Borrie M, Smith M, Accomazzi V, Wells JL, et al. Ventricular enlargement as a possible measure of Alzheimer's disease progression validated using the Alzheimer's disease neuroimaging initiative database. Brain 2008;131(Pt 9):2443-2454 
  31. Moscoso A, Rey-Bretal D, Silva-Rodriguez J, Aldrey JM, Cortes J, Pias-Peleteiro J, et al. White matter hyperintensities are associated with subthreshold amyloid accumulation. Neuroimage 2020;218:116944 
  32. Kuroda T, Honma M, Mori Y, Futamura A, Sugimoto A, Yano S, et al. Increased presence of cerebral microbleeds correlates with ventricular enlargement and increased white matter hyperintensities in Alzheimer's disease. Front Aging Neurosci 2020;12:13 
  33. Thong JY, Hilal S, Wang Y, Soon HW, Dong Y, Collinson SL, et al. Association of silent lacunar infarct with brain atrophy and cognitive impairment. J Neurol Neurosurg Psychiatry 2013;84:1219-1225 
  34. Chen CF, Lan SH, Khor GT, Lai CL, Tai CT. Cognitive dysfunction after acute lacunar infarct. Kaohsiung J Med Sci 2005;21:267-271