• Title/Summary/Keyword: Applicability Evaluation

Search Result 1,559, Processing Time 0.028 seconds

The Nondestructive Reliability Evaluation which it Applies Ultrasound Thermography about Cutting Crack of Piston Skirt (초음파 서모그래피를 적용한 피스톤 스커트 절단균열에 대한 비파괴 신뢰성 평가)

  • Yang, Yong-Ha;Ma, Sang-Dong;Kim, Jea-Yeol
    • Tribology and Lubricants
    • /
    • v.26 no.6
    • /
    • pp.336-340
    • /
    • 2010
  • Ultrasound thermography detects defects by radiating 20 ~ 30 kHz ultrasound waves to the samples and capturing the heat generated from the defects with the use of an infrared thermographic camera. This technology is being spotlighted as a next-generation NDE for the automobile and aerospace industries because it can test large areas and can detect defects such as cracks and exfoliations in real time. The heating mechanism of the ultrasound vibration has not been accurately determined, but the thermomechanical coupling effect and the surface or internal friction are estimated to be the main causes. When this heat is captured by an infrared thermographic camera, the defects inside or on the surface of objects can be quickly detected. Although this technology can construct a testing device relatively simply and can detect defects within a short time, there are no reliable data about the factors related to its detection ability. In this study, the ultrasound thermography technique was used to manufacture gasoline and diesel engine piston specimens, and nondestructive reliability tests to verify the applicability and validity of the ultrasound thermography technique.

An Evaluation of Energy Saving Measures for Ocean Going Vessels

  • Kim, Yong-Wong;Kang, Dal-Won;Nam, Ki-Chan;Nam, Hyung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.39 no.2
    • /
    • pp.107-113
    • /
    • 2015
  • This paper analyzes and evaluates the importance of energy saving measures based on qualitative survey. Through literature review and group interviews with specialists, 4 factors, 13 measures for energy savings, and 4 evaluation criteria were selected to carry out an Analytic Hierarchy Process (AHP) analysis. At the first stage of AHP analysis, the importance of factors was derived, and then the importance of 13 measures. Lastly, the cross examination of 4 factors was carried out in order to evaluate the best possible qualitative considerations. The result revealed that 'choosing the best course weather', is the most important factor with the highest value on applicability and operational complexity criteria. These results may imply that operational considerations are regarded as a main factor to be taken into account when considering appropriate energy saving measures.

A Study on the Probabilistic Nature of Fatigue Crack Propagation Life(II) -The Distribution of Crack Propagation Rate- (피로크랙 진전수명의 확률특성에 관한 연구 II)

  • 윤한용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1561-1567
    • /
    • 1990
  • Recently, some reports of experimental research on the distribution of fatigue crack propagation rate have been published, and the reliability evaluation using the results of research for the mechanical structure has been executed. Since the thicknesses of specimens used in the published reports are limited to the thin ones, the applicability of the results into the mechanical structure with another thickness seems to be doubtful. That is, not only the quantitative evaluation, but also qualitative evaluation of the effect of specimen thickness has not been executed. In this study, an experimental investigation has been done by using the new type automated multi-stage fatigue testing machine which was developed by the author. The influence of specimen thickness for the distribution of fatigue crack propagation rate with the results is discussed.

Strain-based seismic failure evaluation of coupled dam-reservoir-foundation system

  • Hariri-Ardebili, M.A.;Mirzabozorg, H.;Ghasemi, A.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.85-110
    • /
    • 2013
  • Generally, mass concrete structural behavior is governed by the strain components. However, relevant guidelines in dam engineering evaluate the structural behavior of concrete dams using stress-based criteria. In the present study, strain-based criteria are proposed for the first time in a professional manner and their applicability in seismic failure evaluation of an arch dam are investigated. Numerical model of the dam is provided using NSAD-DRI finite element code and the foundation is modeled to be massed using infinite elements at its far-end boundaries. The coupled dam-reservoir-foundation system is solved in Lagrangian-Eulerian domain using Newmark-${\beta}$ time integration method. Seismic performance of the dam is investigated using parameters such as the demand-capacity ratio, the cumulative inelastic duration and the extension of the overstressed/overstrained areas. Real crack profile of the dam based on the damage mechanics approach is compared with those obtained from stress-based and strain-based approaches. It is found that using stress-based criteria leads to conservative results for arch action while seismic safety evaluation using the proposed strain-based criteria leads to conservative cantilever action.

Ant Colony Optimization for Feature Selection in Pattern Recognition (패턴 인식에서 특징 선택을 위한 개미 군락 최적화)

  • Oh, Il-Seok;Lee, Jin-Seon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.1-9
    • /
    • 2010
  • This paper propose a novel scheme called selective evaluation to improve convergence of ACO (ant colony optimization) for feature selection. The scheme cutdown the computational load by excluding the evaluation of unnecessary or less promising candidate solutions. The scheme is realizable in ACO due to the valuable information, pheromone trail which helps identify those solutions. With the aim of checking applicability of algorithms according to problem size, we analyze the timing requirements of three popular feature selection algorithms, greedy algorithm, genetic algorithm, and ant colony optimization. For a rigorous timing analysis, we adopt the concept of atomic operation. Experimental results showed that the ACO with selective evaluation was promising both in timing requirement and recognition performance.

Accuracy Comparison of Motor Imagery Performance Evaluation Factors Using EEG Based Brain Computer Interface by Neurofeedback Effectiveness (뉴로피드백 효과에 따른 EEG 기반 BCI 동작 상상 성능 평가 요소별 정확도 비교)

  • Choi, Dong-Hag;Ryu, Yon-Su;Lee, Young-Bum;Min, Se-Dong;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.4
    • /
    • pp.295-304
    • /
    • 2011
  • In this study, we evaluated the EEG based BCI algorithm using common spatial pattern to find realistic applicability using neurofeedback EEG based BCI algorithm - EEG mode, feature vector calculation, the number of selected channels, 3 types of classifier, window size is evaluated for 10 subjects. The experimental results have been evaluated depending on conditioned experiment whether neurofeedback is used or not In case of using neurofeedback, a few subjects presented exceptional but general tendency presented the performance improvement Through this study, we found a motivation of development for the specific classifier based BCI system and the assessment evaluation system. We proposed a need for an optimized algorithm applicable to the robust motor imagery evaluation system with more useful functionalities.

Friction Welding of Dissimilar Plunger Materials and Its Real Time Evaluation by AE (플런저용 강재의 이종재 마찰용접과 AE에 의한 실시간 평가)

  • Kong, Y.S.;Jo, S.K.;Kim, Y.D.;Oh, S.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.48-53
    • /
    • 2002
  • Plunger (piston rod) materials are used in high-pressure condition. So STD11 is the essential material to build this plunger. However, it costs more to make a plunger by using only STD11 than using the welding of STD11 to SCM440 and other dissimilar material. And it has been difficult to weld this sort of dissimilar materials. They could be unstable in the quality by the conventional arc welding. And also they have a lot of technical problems in manufacturing. But, by the friction welding technique, it will be able to be made without such problems. And then, on account of such reasons, we need a new approach of study on real-time quality evaluation by acoustic emission (AE) techniques as well as a domestic development of the plunger by friction welding. So that, the purpose of this study for such developments is the development of a plunger by optimizing of friction welding with more reliability and more applicability. Then, this study aimed not only to develop the optimization of friction welding of dissimilar plunger steels of STD11 to SCM440, but also to develop the application technique of the acoustic emission to accomplish an in-process real-time quality evaluation during friction welding of the plunger materials by the AE technique.

  • PDF

A Study on the Development of User Satisfaction Indicators for Public Library Evaluation (공공도서관 평가를 위한 이용자 만족도 지표 개발에 관한 연구)

  • Pyo, Soon-Hee;Cha, Sung-Jong
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.43 no.2
    • /
    • pp.329-350
    • /
    • 2009
  • The purpose of this study is to develop the indicators of user satisfaction for Korean public library evaluation. This is an attempt to overcome the inequality of indicators, which mainly consist of inputs and outputs. User satisfaction indicators are constructed through literature reviews and the prepared indicators are tested through a user survey of public libraries. Notably, the test is focused on the applicability of indicators for public libraries with a variety characteristics such as scale and operation organization. Based on the analysis of the results, this study suggests a total of 10 indicators.

Failure Probability Assessment of Gas Pipelines Considering Wall-Thinning Phenomenon (감육현상을 고려한 가스배관의 파손확률 평가)

  • Lee Sang-Min;Yun Kang-Ok;Chang Yoon-Suk;Choi Jae-Boons;Kim Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.158-166
    • /
    • 2005
  • Pressurized gas pipeline is subject to harmful effects both of the surrounding environment and of the materials transmitted in them. In order to maintain the integrity, reliable assessment procedures including tincture mechanics analysis etc are required. Up to now, the integrity assessment has been performed using conventional deterministic approaches even though there are many uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for gas pipeline evaluation. The objectives of this paper are to estimate the failure probability of corroded pipeline in gas and oil plants and to propose limited operating conditions under different types of leadings. To do this, a probabilistic assessment program using reliability index and simulation techniques was developed and applied to evaluate failure probabilities of corroded API-5L-X52/X60 gas pipelines subjected to internal pressure, bending moment and combined loading. The evaluation results showed a promising applicability of the probabilistic integrity assessment program.

Analysis of Loss of Condenser Vacuum Accident using a Conservative Approach with a Best-Estimate Code (최적코드를 이용한 복수기진공상실 사고의 보수적 해석)

  • Jeong, Hae-Yong
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.175-182
    • /
    • 2015
  • A methodology to determine the most conservative initial condition based on random sampling of operation parameters is established, in which a best-estimate computer code is adopted to minimize the conservatism in code models. To validate the applicability of the suggested method, safety evaluation for a transient of loss of condenser vacuum in a pressurized water reactor is performed. One-hundred different initial conditions are generated by MOSAIQUE program automatically and the peak pressure for the most conservative case is determined from transient analyses. The safety margin obtained with the new approach is almost equivalent to the values determined with the existing methodologies. It is found that the time and human resources required for the safety evaluation could be reduced with the suggested approach.