• Title/Summary/Keyword: Apple orchards

Search Result 167, Processing Time 0.025 seconds

Current Status on the Occurrence and Management of Disease, Insect and Mite Pests in the Non-chemical or Organic Cultured Apple Orchards in Korea (무농약 유기재배 사과원의 병해충 발생과 관리 실태)

  • Choi, Kyung-Hee;Lee, Dong-Hyuk;Song, Yang-Yik;Nam, Jong-Chul;Lee, Soon-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.2
    • /
    • pp.221-232
    • /
    • 2010
  • During 2005~2009, current status on the occurrence and the management of the major disease, insect and mite pests were investigated in the non-chemical or organic cultured apple orchards in Korea. Numbers of certified organic or non-chemical apple orchards increased from 14 in 2005 to 78 in 2008. Severe damages on leaves and fruits were caused by the several diseases such as marssonina blotch, bitter rot, white rot, sooty blotch and flyspeck, and the several insect pests such as apple leaf-curling aphid, woolly apple aphid, oriental fruit moth and peach fruit moth on the almost certified organic or non-chemical pest control orchards. About 10 and 18 environmental-friendly materials were used to control diseases and insect or mite pests, respectively. But, lime sulfur and bordeaux mixture to diseases and machine oil, plant oil mixed with egg yolk, and pheromone mating disruptions to insect pests were effective under the adequate conditions.

Identification and Characterization of Pseudomonas syringae pv. syringae, a Causative Bacterium of Apple Canker in Korea

  • Seunghee, Lee;Wonsu, Cheon;Hyeok Tae, Kwon;Younmi, Lee;Jungyeon, Kim;Kotnala, Balaraju;Yongho, Jeon
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.88-107
    • /
    • 2023
  • In the present investigation, bacterial isolates from infected apple trees causing apple canker during winter were studied in the northern Gyeongbuk Province, Korea. The pathogen was identified as Pseudomonas syringae pv. syringae (Pss) through various physiological and biochemical characterization assays such as BIOLOG, gas chromatography of fatty acid methyl esters, and 16S rRNA. Bioassays for the production of phytotoxins were positive for syringopeptin and syringomycin against Bacillus megaterium and Geotrichum candidum, respectively. The polymerase chain reaction (PCR) method enabled the detection of toxin-producing genes, syrB1, and sypB in Pss. The differentiation of strains was performed using LOPAT and GATTa tests. Pss further exhibited ice nucleation activity (INA) at a temperature of -0.7℃, indicating an INA+ bacterium. The ice-nucleating temperature was -4.7℃ for a non-treated control (sterilized distilled water), whereas it was -9.6℃ for an INA- bacterium Escherichia coli TOP10. These methods detected pathogenic strains from apple orchards. Pss might exist in an apple tree during ice injury, and it secretes a toxin that makes leaves yellow and cause canker symptoms. Until now, Korea has not developed antibiotics targeting Pss. Therefore, it is necessary to develop effective disease control to combat Pss in apple orchards. Pathogenicity test on apple leaves and stems showed canker symptoms. The pathogenic bacterium was re-isolated from symptomatic plant tissue and confirmed as original isolates by 16S rRNA. Repetitive element sequence-based PCR and enterobacterial repetitive intergenic consensus PCR primers revealed different genetic profiles within P. syringae pathovars. High antibiotic susceptibility results showed the misreading of mRNA caused by streptomycin and oxytetracycline.

Dieback of Apple Tree by Major Soil Borne Diseases in Chungbuk Province from 2013 to 2015 (2013-2015년 충북에서 주요 토양병에 의한 사과나무 고사 실태)

  • Lee, Sung-Hee;Kwon, Yeuseok;Shin, Hyunman;Kim, Ik-Jei;Nam, Sang-Yeong;Hong, Eui Yon;Kwon, Soon-Il;Kim, Daeil;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.22 no.3
    • /
    • pp.198-201
    • /
    • 2016
  • Recently, severe dieback of apple tree has occurred in the apple orchards of Chungbuk province. Dieback rate and its casual agents have been investigated on the Chungbuk province apple orchards in 2013-2015. Out of 29,265 apple trees in the 27 orchards throughout Chungbuk province, 4,000 apple trees (13.7%) showed dieback symptoms. The causes of dieback were Phytophthora rot (50.4%), violet root rot by Helicobasidium sp. (27.1%), rodents (10%), white root rot by Rosellinia sp. (6.3%), and freezing injury (6.3%). Compared to previous reports published in 1995 and 2006, Phytophthora rot was the most dominant disease, which is thought to be due to high temperature during growing season and the increase of lowland cultivation. Results of this study will be useful to establish of the management strategy of apple tree dieback that has been increased recently.

Comparison of Soil Physical Properties in Conventional and Organic Farming Apple Orchards

  • Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • Soil physical properties in organic farming apple orchard were evaluated in relation to conventional farming to better understand the effects of organic farming system on soil quality. Two adjacent apple orchards, matched by soil type, were chosen to ensure the same pedological conditions except management system. Soil samples were collected from middle of two adjacent trees along the tree line at two depths of 5-20 and 20-35 cm in September 2006. Contents of organic matter in organic farming soil were twice as much as those found in soil of conventional farming. The higher level of organic matter in organic farming soil was reflected through a consequent trend in improved soil physical properties. Organic farming produced greater aggregation in >2 mm size and increased aggregate stability. Bulk density was lower by 13% and hence porosity was higher in soils of organic farming as compared with conventional farming. Water holding capacity was significantly greater with organic farming by >17% over conventional farming. The capacity of organic farming to improve soil physical properties can be contributed to the regular application of relatively large amount of organic materials and the sustainable ground-cover managements, mulching with compost and cover crop cultivation.

Evidence of Greater Competitive Fitness of Erwinia amylovora over E. pyrifoliae in Korean Isolates

  • Choi, Jeong Ho;Kim, Jong-Yea;Park, Duck Hwan
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.355-365
    • /
    • 2022
  • Erwinia amylovora and E. pyrifoliae are the causative agents of destructive diseases in both apple and pear trees viz. fire blight and black shoot blight, respectively. Since the introduction of fire blight in Korea in 2015, the occurrence of both pathogens has been independently reported. The co-incidence of these diseases is highly probable given the co-existence of their pathogenic bacteria in the same trees or orchards in a city/district. Hence, this study evaluated whether both diseases occurred in neighboring orchards and whether they occurred together in a single orchard. The competition and virulence of the two pathogens was compared using growth rates in vitro and in planta. Importantly, E amylovora showed significantly higher colony numbers than E. pyrifoliae when they were co-cultured in liquid media and co-inoculated into immature apple fruits and seedlings. In a comparison of the usage of major carbon sources, which are abundant in immature apple fruits and seedlings, E. amylovora also showed better growth rates than E. pyrifoliae. In virulence assays, including motility and a hypersensitive response (HR), E. amylovora demonstrated a larger diameter of travel from the inoculation site than E. pyrifoliae in both swarming and swimming motilities. E. amylovora elicited a HR in tobacco leaves when diluted from 1:1 to 1:16 but E. pyrifoliae does not elicit a HR when diluted at 1:16. Therefore, E. amylovora was concluded to have a greater competitive fitness than E. pyrifoliae.

Unrecorded Fungi Isolated from Fire Blight-controlled Apple Orchard Soil in Korea

  • Soo Young Chi;Jun Woo Cho;Hyeongjin Noh;Minseok Kim;Ye Eun Kim;Seong Hwan Kim
    • The Korean Journal of Mycology
    • /
    • v.51 no.4
    • /
    • pp.491-504
    • /
    • 2023
  • To explore fungal diversity in orchard soil where fire-blighted apple trees are buried, we collected soil samples from apple orchards in Chungju, Korea. Fungal isolates were obtained from DG18 agar and identified at the species level based on morphological features and phylogenetic analyses. The colony characteristics and microstructures were examined using a light microscope and a scanning electron microscope after culturing on potato dextrose agar (PDA), malt extract agar (MEA), Czapek yeast agar (CYA), and oatmeal agar (OA) The PCR-amplified products of the ITS1-5.8S-ITS2 region and 28S large subunit of the nuclear ribosomal RNA gene, as well as partial sequences of the β-tubulin, calmodulin, and translation elongation factor 1-α genes were sequenced and analyzed phylogenetically. Seven previously unknown fungal species were explored in Korea. All samples, including Aspergillus aureolatus, Botryotrichum atrogriseum, Dactylonectria novozelandica, Fusarium denticulatum, Paecilomyces tabacinus, Sarcopodium tibetense and Talaromyces stollii, had ascomycetes. Herein, we report their descriptions and features.

Occurrence Pattern of an Unidentified Moth Captured by Sex Pheromone Trap of the Oriental Fruit Moth, Grapholita molesta, and Its Discriminating Molecular Markers (복숭아순나방(Grapholita molesta) 성페로몬 트랩에 포획된 미동정 나방의 발생패턴과 판별 분자지표)

  • Huh, Hye-Jung;Son, Ye-Rim;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.47 no.3
    • /
    • pp.303-308
    • /
    • 2008
  • An unidentified moth was captured in sex pheromone traps of the oriental fruit moth, Grapholita molesta, especially at spring season in apple orchards and their vicinity. Though the captured males were similar in appearance to G. molesta males, they were easily distinguished by a matted difference in body size. Their occurrence pattern was also similar to that of overwintering G. molesta population from April to May, at which more males were captured in the pheromone traps installed in the vicinity of apple orchards than within apple orchards. After May, they were no longer captured in the pheromone traps. To investigate any larval damage due to this unidentified moth, molecular markers needed to be developed. Four PCR-RFLP markers originated from cytochrome b region of mitochondrial DNA could distinguish this unidentified moth from G. molesta.

Comparison and Analysis of Insecticide Resistance of Two Spotted Spider Mite (Tetranychus urficae) among Apple Orchards (사과과수원 점박이응애의 약제 저항성 비교 분석)

  • Lee, Si-Woo;Kim, Kwang-Ho;Park, Chang-Gyoo;Park, Hong-Hyun;Lee, Kwan-Suk;Choi, Byeong-Ryeol;Lee, Sang-Guye
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.3
    • /
    • pp.266-271
    • /
    • 2010
  • Six insecticides, monocrotophos (24%, Lq), milbemectin (1%, Ec), tebufenpyrad (10%, Ec), propargite (30%, Wp), dicofol (42%, Ec), and fenpropathrin (5%, Ec) were studied for their $LC_{50}s$ to local two-spotted spider mite (TSSM) strains collected at apple orchards in Chungju, Kunwi and Sobo in Korea. Monocrotophos and fenpropathrin were not effective due to resistance development, but milbemectin, tebufenpyrad, dicofol and propargite were effective to TSSM. $LC_{50}$ values to TSSM strains showed the same distribution pattern among apple orchards. However, TSSMs from different apple orchard were clustered into different groups.

Observation on the Fauna of Arthropods form Apple Orchards in Winter in Kyongbuk Province (경북지방 사과원의 동계 절지동물(Arthropoda)상)

  • 이영인;권기면;이순원;류하경;류언하
    • Korean journal of applied entomology
    • /
    • v.36 no.3
    • /
    • pp.231-236
    • /
    • 1997
  • Arthropods of 3 Classes, 19 Orders and 58 Families were collected by the enticing band from the trunk of apple trees in winter in Kyongbuk province. The two spotted spider mite, Tetranychu.v urricae Koch, was dominant species with 53.0%, followed by Eriosomtr lanigerutn Hausmann. 16.7%. Oribatida 13.3% and Collembola 9.3%. Of those, herbivores were majority, followed by some decomposers and few natural enemies. Arthropods of 2 Classes, 12 Orders and 17 Families were observed from the fallen leaves. T. urric,ae 63.1% was dominant, followed by Collembola 13.797~ and other Arthropods. While 2 Classes, 9 Orders and 18 Families were investigated from the soil of apple orchards. They were collembola 37.9%. Oribatida 34.476, T. urticae Ih.l% and others in few numbers. Decomposers were majority, followed by herbivores and few natural enemies.

  • PDF

Investigation on the Management Status of Pear and Apple Orchards Where Fire Blight Disease Was Partially Controlled in Korea (국내 과수화상병을 부분 방제한 배와 사과 과원의 관리 현황 조사)

  • Jun Woo Cho;Eunjung Roh;Yong Hwan Lee;Seong Hwan Kim
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.316-320
    • /
    • 2023
  • Recently, the domestic plant disease control policy for fire blight has been implemented partial control in addition to burial control. In this study, an on-site management survey was conducted targeting orchards that implemented partial disease control from 2019 to 2020 in order to find efficient implementation methods for partial disease control. As a result of an investigation into 22 pear and apple orchards in Cheonan and Chungju, 7 orchards were buried. The upper part of the cut infected plants was burned at 16 orchards and covered with plastic vinyl after lime treatment at 6 orchards. The lower stumps of cut infected plants were burned at 7 orchards and covered with plastic vinyl after lime treatment at 15 orchards. There were two orchards where suckers appeared on the stumps even though covers were applied. There was no infection by Erwinia amylovora in the suckers. The conservation condition of lime treatment was good, but warning signs were absent at 6 orchards. Most orchards treated the stumps and surrounding areas with glyphosate-isopropylamine herbicide. The effect of partial control was judged to be safe.