• Title/Summary/Keyword: Appearance-Based Recognition

Search Result 147, Processing Time 0.021 seconds

Effective Pose-based Approach with Pose Estimation for Emotional Action Recognition (자세 예측을 이용한 효과적인 자세 기반 감정 동작 인식)

  • Kim, Jin Ok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.3
    • /
    • pp.209-218
    • /
    • 2013
  • Early researches in human action recognition have focused on tracking and classifying articulated body motions. Such methods required accurate segmentation of body parts, which is a sticky task, particularly under realistic imaging conditions. Recent trends of work have become popular towards the use of more and low-level appearance features such as spatio-temporal interest points. Given the great progress in pose estimation over the past few years, redefined views about pose-based approach are needed. This paper addresses the issues of whether it is sufficient to train a classifier only on low-level appearance features in appearance approach and proposes effective pose-based approach with pose estimation for emotional action recognition. In order for these questions to be solved, we compare the performance of pose-based, appearance-based and its combination-based features respectively with respect to scenario of various emotional action recognition. The experiment results show that pose-based features outperform low-level appearance-based approach of features, even when heavily spoiled by noise, suggesting that pose-based approach with pose estimation is beneficial for the emotional action recognition.

Local Appearance-based Face Recognition Using SVM and PCA (SVM과 PCA를 이용한 국부 외형 기반 얼굴 인식 방법)

  • Park, Seung-Hwan;Kwak, No-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.54-60
    • /
    • 2010
  • The local appearance-based method is one of the face recognition methods that divides face image into small areas and extracts features from each area of face image using statistical analysis. It collects classification results of each area and decides identity of a face image using a voting scheme by integrating classification results of each area of a face image. The conventional local appearance-based method divides face images into small pieces and uses all the pieces in recognition process. In this paper, we propose a local appearance-based method that makes use of only the relatively important facial components. The proposed method detects the facial components such as eyes, nose and mouth that differs much from person to person. In doing so, the proposed method detects exact locations of facial components using support vector machines (SVM). Based on the detected facial components, a number of small images that contain the facial parts are constructed. Then it extracts features from each facial component image using principal components analysis (PCA). We compared the performance of the proposed method to those of the conventional methods. The results show that the proposed method outperforms the conventional local appearance-based method while preserving the advantages of the conventional local appearance-based method.

Facial Data Visualization for Improved Deep Learning Based Emotion Recognition

  • Lee, Seung Ho
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.2
    • /
    • pp.32-39
    • /
    • 2019
  • A convolutional neural network (CNN) has been widely used in facial expression recognition (FER) because it can automatically learn discriminative appearance features from an expression image. To make full use of its discriminating capability, this paper suggests a simple but effective method for CNN based FER. Specifically, instead of an original expression image that contains facial appearance only, the expression image with facial geometry visualization is used as input to CNN. In this way, geometric and appearance features could be simultaneously learned, making CNN more discriminative for FER. A simple CNN extension is also presented in this paper, aiming to utilize geometric expression change derived from an expression image sequence. Experimental results on two public datasets (CK+ and MMI) show that CNN using facial geometry visualization clearly outperforms the conventional CNN using facial appearance only.

Emotion Recognition based on Tracking Facial Keypoints (얼굴 특징점 추적을 통한 사용자 감성 인식)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.97-101
    • /
    • 2019
  • Understanding and classification of the human's emotion play an important tasks in interacting with human and machine communication systems. This paper proposes a novel emotion recognition method by extracting facial keypoints, which is able to understand and classify the human emotion, using active Appearance Model and the proposed classification model of the facial features. The existing appearance model scheme takes an expression of variations, which is calculated by the proposed classification model according to the change of human facial expression. The proposed method classifies four basic emotions (normal, happy, sad and angry). To evaluate the performance of the proposed method, we assess the ratio of success with common datasets, and we achieve the best 93% accuracy, average 82.2% in facial emotion recognition. The results show that the proposed method effectively performed well over the emotion recognition, compared to the existing schemes.

The Effects of Sociocultural Attitudes toward Appearance and Appearance Management Attitudes on Fashion Behaviors - Focused on College Students - (외모에 대한 사회문화적 태도와 외모관리 태도가 패션행동에 미치는 영향 - 대학생을 중심으로 -)

  • Park, Eun-Hee;Ku, Yang-Suk
    • Fashion & Textile Research Journal
    • /
    • v.14 no.5
    • /
    • pp.811-820
    • /
    • 2012
  • This study identifies the factor structure of sociocultural attitudes toward appearance, appearance management attitudes, fashion behaviors, and the effects of sociocultural attitudes toward appearance and appearance management attitudes on fashion behaviors. Questionnaires were administered to 255 college students living in Daegu Metropolitan City and Kyungbook province. The data collected were analyzed using frequency, factor analysis, multiple regression, and t-test. The findings were as follows. Sociocultural attitudes toward appearance were composed of two factors (body internalization and appearance recognition). Appearance management attitudes were composed of four factors (shape management recognition, weight management, appearance satisfaction, and health care). Fashion behaviors were composed of six factors (convenience, fashion following, self-satisfaction, attractiveness, pursuit of change, and pleasure). Gender of college students showed a distinction between the sub-variables of sociocultural attitudes toward appearance factors (body internalization) and appearance management attitudes (weight management) and fashion behaviors (convenience, fashion following, self-satisfaction, and pleasure). Women had more desire to have a similar looking body of TV celebrities than men. The effects of sociocultural attitudes toward appearance and appearance management attitudes on each fashion behavior variables (convenience, fashion following, self-satisfaction, attractiveness, pursuit of change, and pleasure) were explained by the factors of body internalization and appearance recognition, and weight management, appearance satisfaction, and health care. College students produced fashion appropriate to the situation. Strategies of fashion marketing based on these results are as follow. Through mass media, advertisers help university students realize a healthy outlook and create a social atmosphere that can promote healthy body attractions.

The Influence of the Type of Single Females' Life Style in Their 20s through 30s on the Recognition of the Behavior for Beauty (20-30대 미혼여성의 라이프스타일 유형이 뷰티행동인식에 미치는 영향)

  • Hong, Soo-Nam
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.16 no.1
    • /
    • pp.77-89
    • /
    • 2014
  • This study looked into the effect of the life style of single females in 20s and 30s on beauty behavior recognition, and spss 17.0 is used for data analysis method. As for the statistical analysis method in order to validate the measurement tools, reliability verification is conducted and life style groups are sampled using K-means taking into account factor scores by life style. To find out the difference between general beauty behavior recognition and life style, descriptive statistics and One Way ANOVA were carried out, and Duncan Test was implemented for the post examination method. Multiple regression analysis was also carried out to figure out the effect of life style on beauty behavior recognition. The result is as follows. First, according to the results of reliability verification and factor analysis for the lifestyle type and the recognition of the behavior for beauty, the types of the life style of the subjects were divided into Economic Utility, Convention Conservatism, Self Development, Showy Consumption, and Appearance Oriented, and the recognition of the behavior for beauty was named as Makeup and Hair, Cosmetic Surgery, Body Care, and Skin Care. Second, as to the recognition of the behavior for beauty based upon the lifestyle, the Appearance Oriented in Showy Consumption recorded the highest. Third, the analysis of the influence of the style on the recognition of the behavior for beauty showed that the behavior recognition for Makeup and Hair and for Skin Care was affected by the life style of Self Development, Showy Consumption, and Appearance Oriented; the behavior recognition for Cosmetic Surgery was affected by the life style of Conventional Conservatism, Showy Consumption, and Appearance Oriented; and again the behavior recognition for Body Care was by that of Economical Utility and Showy Consumption.

  • PDF

Age Invariant Face Recognition Based on DCT Feature Extraction and Kernel Fisher Analysis

  • Boussaad, Leila;Benmohammed, Mohamed;Benzid, Redha
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.392-409
    • /
    • 2016
  • The aim of this paper is to examine the effectiveness of combining three popular tools used in pattern recognition, which are the Active Appearance Model (AAM), the two-dimensional discrete cosine transform (2D-DCT), and Kernel Fisher Analysis (KFA), for face recognition across age variations. For this purpose, we first used AAM to generate an AAM-based face representation; then, we applied 2D-DCT to get the descriptor of the image; and finally, we used a multiclass KFA for dimension reduction. Classification was made through a K-nearest neighbor classifier, based on Euclidean distance. Our experimental results on face images, which were obtained from the publicly available FG-NET face database, showed that the proposed descriptor worked satisfactorily for both face identification and verification across age progression.

The study on the object recognition using Fuzzy Classification system based on Support Vector (서포트 벡터 기반 퍼지 분류 시스템을 이용한 물체 인식)

  • Kim, Sung-Jin;Won, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.167-170
    • /
    • 2003
  • 본 논문에서는 패턴 인식의 전형적인 경우인 보이기 기반 물체 인식(Appearance based object recognition)을 수행하기 위하여, 일반적인 퍼지 분류 모델과, 서포트 벡터 머신을 하이브리드(hybrid) 하게 연결한 서포트 벡터 기반 퍼지 분류 시스템이라는 새로운 방법을 제안하고 이에 대하여 연구한다. 일반적인 분류(classification)문제의 경우 두 클래스로 구분하는데 최적의 성능을 가지고 있는 서포트 벡터 머신이 다중클래스(Multiclass)의 경우 발생 하는 계산량의 증가 문제를 해 결하기 위하여 다중 클래스 분류(Multiclass classification)에 장점을 가진 퍼지 분류 시스템을 도입, 서포트 벡터 머신에 연결함으로써 단점을 보완하는 시스템을 제안한다. 즉 서포트 벡터 머신을 통해 퍼지 시스템의 구조를 러닝(learning)하는데 사용하여 최종 적으로는 퍼지 분류 시스템(Fuzzy Classifier)이 나오도록 하는 것이다. 이 시스템의 성능을 확인하고자 여러 가지 물체들에 대한 이미지를 가지고 있는 COIL(Columbia Object Image Library) 데이터 베이스를 사용하여 보이기 기반 물체 인식(Appearance based Object Recognition)을 수행 하였으며 이를 순수한 서포트 벡터 머신만을 이용하여 물체 인식을 수행한 경우와 정확도 및 인식 시간에 대하여 비교하였다.

  • PDF

A Study on Appearance-Based Facial Expression Recognition Using Active Shape Model (Active Shape Model을 이용한 외형기반 얼굴표정인식에 관한 연구)

  • Kim, Dong-Ju;Shin, Jeong-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • This paper introduces an appearance-based facial expression recognition method using ASM landmarks which is used to acquire a detailed face region. In particular, EHMM-based algorithm and SVM classifier with histogram feature are employed to appearance-based facial expression recognition, and performance evaluation of proposed method was performed with CK and JAFFE facial expression database. In addition, performance comparison was achieved through comparison with distance-based face normalization method and a geometric feature-based facial expression approach which employed geometrical features of ASM landmarks and SVM algorithm. As a result, the proposed method using ASM-based face normalization showed performance improvements of 6.39% and 7.98% compared to previous distance-based face normalization method for CK database and JAFFE database, respectively. Also, the proposed method showed higher performance compared to geometric feature-based facial expression approach, and we confirmed an effectiveness of proposed method.

3D Active Appearance Model for Face Recognition (얼굴인식을 위한 3D Active Appearance Model)

  • Cho, Kyoung-Sic;Kim, Yong-Guk
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1006-1011
    • /
    • 2007
  • Active Appearance Models은 객체의 모델링에 널리 사용되며, 특히 얼굴 모델은 얼굴 추적, 포즈 인식, 표정 인식, 그리고 얼굴 인식에 널리 사용되고 있다. 최초의 AAM은 Shape과 Appearance가 하나의 계수에 의해서 만들어 지는 Combined AAM이였고, 이후 Shape과 Appearance의 계수가 분리된 Independent AAM과 3D를 표현할 수 있는 Combined 2D+3D AAM이 개발 되었다. 비록 Combined 2D+3D AAM이 3D를 표현 할 수 있을지라도 이들은 공통적으로 2D 영상을 사용하여 모델을 생산한다. 본 논문에서 우리는 stereo-camera based 3D face capturing device를 통해 획득한 3D 데이터를 기반으로 하는 3D AAM을 제안한다. 우리의 3D AAM은 3D정보를 이용해 모델을 생산하므로 기존의 AAM보다 정확한 3D표현이 가능하고 Alignment Algorithm으로 Inverse Compositional Image Alignment(ICIA)를 사용하여 빠르게 Model Instance를 생산할 수 있다. 우리는 3D AAM을 평가하기 위해 stereo-camera based 3D face capturing device로 촬영해 수집한 한국인 얼굴 데이터베이스[9]로 얼굴인식을 수행하였다.

  • PDF