• 제목/요약/키워드: Appearance-Based Recognition

검색결과 147건 처리시간 0.024초

자세 예측을 이용한 효과적인 자세 기반 감정 동작 인식 (Effective Pose-based Approach with Pose Estimation for Emotional Action Recognition)

  • 김진옥
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권3호
    • /
    • pp.209-218
    • /
    • 2013
  • 인간의 동작 인식에 대한 이전 연구는 주로 관절체로 표현된 신체 움직임을 추적하고 분류하는데 초점을 맞춰 왔다. 이 방식들은 실제 이미지 사용 환경에서 신체 부위에 대한 정확한 분류가 필요하다는 점이 까다롭기 때문에 최근의 동작 인식 연구 동향은 시공간상의 관심 점과 같이 저수준의, 더 추상적인 외형특징을 이용하는 방식이 일반화되었다. 하지만 몇 년 사이 자세 예측 기술이 발전하면서 자세 기반 방식에 대한 시각을 재정립하는 것이 필요하다. 본 연구는 외형 기반 방식에서 저수준의 외형특징만으로 분류기를 학습시키는 것이 충분한지에 대한 문제를 제기하면서 자세 예측을 이용한 효과적인 자세기반 동작인식 방식을 제안하였다. 이를 위해 다양한 감정을 표현하는 동작 시나리오를 대상으로 외형 기반, 자세 기반 특징 및 두 가지 특징을 조합한 방식을 비교하였다. 실험 결과, 자세 예측을 이용한 자세 기반 방식이 저수준의 외형특징을 이용한 방식보다 감정 동작 분류 및 인식 성능이 더 나았으며 잡음 때문에 심하게 망가진 이미지의 감정 동작 인식에도 자세 예측을 이용한 자세기반의 방식이 효과적이었다.

SVM과 PCA를 이용한 국부 외형 기반 얼굴 인식 방법 (Local Appearance-based Face Recognition Using SVM and PCA)

  • 박승환;곽노준
    • 대한전자공학회논문지SP
    • /
    • 제47권3호
    • /
    • pp.54-60
    • /
    • 2010
  • 얼굴 인식 방법 중에 한 얼굴 영상을 분할하여 분할한 각 부분마다 통계적 방법을 적용해 특징추출을 수행한 다음 각 부분마다 분류를 수행하고 이러한 분류결과를 모아서 voting등의 방법으로 얼굴 인식을 수행 하는 방법을 국부 외형 기반 방법(local appearance-based method) 이라고 한다. 기존에 제안된 국부 외형 기반 얼굴 인식은 얼굴 영상을 일정한 크기로 단순분할하고, 그 부분들을 모두 인식에 사용한다. 본고에서는 인식에 상대적으로 중요한 부분만을 사용하여 얼굴 인식을 수행하는 새로운 국부 외형 기반 얼굴 인식 방법을 제안한다. 본고에서는 단순 분할 방법 대신에 눈, 코, 입 등 인물 간의 차이가 잘 나타나는 얼굴 부분들을 support vector machine (SVM) 을 이용하여 검출한 후, 검출한 각 부분에 주성분 분석 (PCA) 을 적용하고 이를 통합하여 얼굴 인식을 수행하였다. 실험을 통해 제안한 방법과 기존 방법의 성능을 비교한 결과, 제안한 방법이 기존의 국부 외형 기반 방법의 장점을 지니는 동시에 성능을 개선시킴을 확인하였다.

Facial Data Visualization for Improved Deep Learning Based Emotion Recognition

  • Lee, Seung Ho
    • Journal of Information Science Theory and Practice
    • /
    • 제7권2호
    • /
    • pp.32-39
    • /
    • 2019
  • A convolutional neural network (CNN) has been widely used in facial expression recognition (FER) because it can automatically learn discriminative appearance features from an expression image. To make full use of its discriminating capability, this paper suggests a simple but effective method for CNN based FER. Specifically, instead of an original expression image that contains facial appearance only, the expression image with facial geometry visualization is used as input to CNN. In this way, geometric and appearance features could be simultaneously learned, making CNN more discriminative for FER. A simple CNN extension is also presented in this paper, aiming to utilize geometric expression change derived from an expression image sequence. Experimental results on two public datasets (CK+ and MMI) show that CNN using facial geometry visualization clearly outperforms the conventional CNN using facial appearance only.

얼굴 특징점 추적을 통한 사용자 감성 인식 (Emotion Recognition based on Tracking Facial Keypoints)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.97-101
    • /
    • 2019
  • Understanding and classification of the human's emotion play an important tasks in interacting with human and machine communication systems. This paper proposes a novel emotion recognition method by extracting facial keypoints, which is able to understand and classify the human emotion, using active Appearance Model and the proposed classification model of the facial features. The existing appearance model scheme takes an expression of variations, which is calculated by the proposed classification model according to the change of human facial expression. The proposed method classifies four basic emotions (normal, happy, sad and angry). To evaluate the performance of the proposed method, we assess the ratio of success with common datasets, and we achieve the best 93% accuracy, average 82.2% in facial emotion recognition. The results show that the proposed method effectively performed well over the emotion recognition, compared to the existing schemes.

외모에 대한 사회문화적 태도와 외모관리 태도가 패션행동에 미치는 영향 - 대학생을 중심으로 - (The Effects of Sociocultural Attitudes toward Appearance and Appearance Management Attitudes on Fashion Behaviors - Focused on College Students -)

  • 박은희;구양숙
    • 한국의류산업학회지
    • /
    • 제14권5호
    • /
    • pp.811-820
    • /
    • 2012
  • This study identifies the factor structure of sociocultural attitudes toward appearance, appearance management attitudes, fashion behaviors, and the effects of sociocultural attitudes toward appearance and appearance management attitudes on fashion behaviors. Questionnaires were administered to 255 college students living in Daegu Metropolitan City and Kyungbook province. The data collected were analyzed using frequency, factor analysis, multiple regression, and t-test. The findings were as follows. Sociocultural attitudes toward appearance were composed of two factors (body internalization and appearance recognition). Appearance management attitudes were composed of four factors (shape management recognition, weight management, appearance satisfaction, and health care). Fashion behaviors were composed of six factors (convenience, fashion following, self-satisfaction, attractiveness, pursuit of change, and pleasure). Gender of college students showed a distinction between the sub-variables of sociocultural attitudes toward appearance factors (body internalization) and appearance management attitudes (weight management) and fashion behaviors (convenience, fashion following, self-satisfaction, and pleasure). Women had more desire to have a similar looking body of TV celebrities than men. The effects of sociocultural attitudes toward appearance and appearance management attitudes on each fashion behavior variables (convenience, fashion following, self-satisfaction, attractiveness, pursuit of change, and pleasure) were explained by the factors of body internalization and appearance recognition, and weight management, appearance satisfaction, and health care. College students produced fashion appropriate to the situation. Strategies of fashion marketing based on these results are as follow. Through mass media, advertisers help university students realize a healthy outlook and create a social atmosphere that can promote healthy body attractions.

20-30대 미혼여성의 라이프스타일 유형이 뷰티행동인식에 미치는 영향 (The Influence of the Type of Single Females' Life Style in Their 20s through 30s on the Recognition of the Behavior for Beauty)

  • 홍수남
    • 한국의상디자인학회지
    • /
    • 제16권1호
    • /
    • pp.77-89
    • /
    • 2014
  • This study looked into the effect of the life style of single females in 20s and 30s on beauty behavior recognition, and spss 17.0 is used for data analysis method. As for the statistical analysis method in order to validate the measurement tools, reliability verification is conducted and life style groups are sampled using K-means taking into account factor scores by life style. To find out the difference between general beauty behavior recognition and life style, descriptive statistics and One Way ANOVA were carried out, and Duncan Test was implemented for the post examination method. Multiple regression analysis was also carried out to figure out the effect of life style on beauty behavior recognition. The result is as follows. First, according to the results of reliability verification and factor analysis for the lifestyle type and the recognition of the behavior for beauty, the types of the life style of the subjects were divided into Economic Utility, Convention Conservatism, Self Development, Showy Consumption, and Appearance Oriented, and the recognition of the behavior for beauty was named as Makeup and Hair, Cosmetic Surgery, Body Care, and Skin Care. Second, as to the recognition of the behavior for beauty based upon the lifestyle, the Appearance Oriented in Showy Consumption recorded the highest. Third, the analysis of the influence of the style on the recognition of the behavior for beauty showed that the behavior recognition for Makeup and Hair and for Skin Care was affected by the life style of Self Development, Showy Consumption, and Appearance Oriented; the behavior recognition for Cosmetic Surgery was affected by the life style of Conventional Conservatism, Showy Consumption, and Appearance Oriented; and again the behavior recognition for Body Care was by that of Economical Utility and Showy Consumption.

  • PDF

Age Invariant Face Recognition Based on DCT Feature Extraction and Kernel Fisher Analysis

  • Boussaad, Leila;Benmohammed, Mohamed;Benzid, Redha
    • Journal of Information Processing Systems
    • /
    • 제12권3호
    • /
    • pp.392-409
    • /
    • 2016
  • The aim of this paper is to examine the effectiveness of combining three popular tools used in pattern recognition, which are the Active Appearance Model (AAM), the two-dimensional discrete cosine transform (2D-DCT), and Kernel Fisher Analysis (KFA), for face recognition across age variations. For this purpose, we first used AAM to generate an AAM-based face representation; then, we applied 2D-DCT to get the descriptor of the image; and finally, we used a multiclass KFA for dimension reduction. Classification was made through a K-nearest neighbor classifier, based on Euclidean distance. Our experimental results on face images, which were obtained from the publicly available FG-NET face database, showed that the proposed descriptor worked satisfactorily for both face identification and verification across age progression.

서포트 벡터 기반 퍼지 분류 시스템을 이용한 물체 인식 (The study on the object recognition using Fuzzy Classification system based on Support Vector)

  • 김성진;원상철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.167-170
    • /
    • 2003
  • 본 논문에서는 패턴 인식의 전형적인 경우인 보이기 기반 물체 인식(Appearance based object recognition)을 수행하기 위하여, 일반적인 퍼지 분류 모델과, 서포트 벡터 머신을 하이브리드(hybrid) 하게 연결한 서포트 벡터 기반 퍼지 분류 시스템이라는 새로운 방법을 제안하고 이에 대하여 연구한다. 일반적인 분류(classification)문제의 경우 두 클래스로 구분하는데 최적의 성능을 가지고 있는 서포트 벡터 머신이 다중클래스(Multiclass)의 경우 발생 하는 계산량의 증가 문제를 해 결하기 위하여 다중 클래스 분류(Multiclass classification)에 장점을 가진 퍼지 분류 시스템을 도입, 서포트 벡터 머신에 연결함으로써 단점을 보완하는 시스템을 제안한다. 즉 서포트 벡터 머신을 통해 퍼지 시스템의 구조를 러닝(learning)하는데 사용하여 최종 적으로는 퍼지 분류 시스템(Fuzzy Classifier)이 나오도록 하는 것이다. 이 시스템의 성능을 확인하고자 여러 가지 물체들에 대한 이미지를 가지고 있는 COIL(Columbia Object Image Library) 데이터 베이스를 사용하여 보이기 기반 물체 인식(Appearance based Object Recognition)을 수행 하였으며 이를 순수한 서포트 벡터 머신만을 이용하여 물체 인식을 수행한 경우와 정확도 및 인식 시간에 대하여 비교하였다.

  • PDF

Active Shape Model을 이용한 외형기반 얼굴표정인식에 관한 연구 (A Study on Appearance-Based Facial Expression Recognition Using Active Shape Model)

  • 김동주;신정훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권1호
    • /
    • pp.43-50
    • /
    • 2016
  • 본 논문에서는 ASM(Active Shape Model) 특징점(Landmark)을 이용하여 정밀한 얼굴영역을 획득하고, 외형기반 접근법으로 표정을 인식하는 방법에 대하여 제안한다. 외형기반 표정인식은 EHMM(Embedded Hidden Markov Model) 및 이진패턴 히스토그램 특징과 SVM(Support Vector Machine)을 사용하는 알고리즘으로 구성되며, 제안 방법의 성능평가는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 이용하여 수행되었다. 더불어, 성능비교는 기존의 눈 거리 기반의 얼굴 정규화 방법과 비교를 통하여 수행되었고, 또한 ASM 전체 특징점 및 변형된 특징을 SVM으로 인식하는 기하학적 표정인식 방법론과 성능비교를 수행하였다. 실험 결과, 제안 방법은 거리기반 얼굴정규화 영상을 사용한 방법보다 CK 데이터베이스 및 JAFFE 데이터베이스 경우, 최대 6.39%와 7.98%의 성능향상을 보였다. 또한, 제안 방법은 기하학적 특징점을 사용한 방법보다 높은 인식 성능을 보였으며, 이로부터 제안하는 표정인식 방법의 효용성을 확인하였다.

얼굴인식을 위한 3D Active Appearance Model (3D Active Appearance Model for Face Recognition)

  • 조경식;김용국
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.1006-1011
    • /
    • 2007
  • Active Appearance Models은 객체의 모델링에 널리 사용되며, 특히 얼굴 모델은 얼굴 추적, 포즈 인식, 표정 인식, 그리고 얼굴 인식에 널리 사용되고 있다. 최초의 AAM은 Shape과 Appearance가 하나의 계수에 의해서 만들어 지는 Combined AAM이였고, 이후 Shape과 Appearance의 계수가 분리된 Independent AAM과 3D를 표현할 수 있는 Combined 2D+3D AAM이 개발 되었다. 비록 Combined 2D+3D AAM이 3D를 표현 할 수 있을지라도 이들은 공통적으로 2D 영상을 사용하여 모델을 생산한다. 본 논문에서 우리는 stereo-camera based 3D face capturing device를 통해 획득한 3D 데이터를 기반으로 하는 3D AAM을 제안한다. 우리의 3D AAM은 3D정보를 이용해 모델을 생산하므로 기존의 AAM보다 정확한 3D표현이 가능하고 Alignment Algorithm으로 Inverse Compositional Image Alignment(ICIA)를 사용하여 빠르게 Model Instance를 생산할 수 있다. 우리는 3D AAM을 평가하기 위해 stereo-camera based 3D face capturing device로 촬영해 수집한 한국인 얼굴 데이터베이스[9]로 얼굴인식을 수행하였다.

  • PDF