• Title/Summary/Keyword: Apparent diffusion coefficient (ADC)

Search Result 81, Processing Time 0.028 seconds

Association between High Diffusion-Weighted Imaging-Derived Functional Tumor Burden of Peritoneal Carcinomatosis and Overall Survival in Patients with Advanced Ovarian Carcinoma

  • He An;Jose AU Perucho;Keith WH Chiu;Edward S Hui;Mandy MY Chu;Siew Fei Ngu;Hextan YS Ngan;Elaine YP Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.5
    • /
    • pp.539-547
    • /
    • 2022
  • Objective: To investigate the association between functional tumor burden of peritoneal carcinomatosis (PC) derived from diffusion-weighted imaging (DWI) and overall survival in patients with advanced ovarian carcinoma (OC). Materials and Methods: This prospective study was approved by the local research ethics committee, and informed consent was obtained. Fifty patients (mean age ± standard deviation, 57 ± 12 years) with stage III-IV OC scheduled for primary or interval debulking surgery (IDS) were recruited between June 2016 and December 2021. DWI (b values: 0, 400, and 800 s/mm2) was acquired with a 16-channel phased-array torso coil. The functional PC burden on DWI was derived based on K-means clustering to discard fat, air, and normal tissue. A score similar to the surgical peritoneal cancer index was assigned to each abdominopelvic region, with additional scores assigned to the involvement of critical sites, denoted as the functional peritoneal cancer index (fPCI). The apparent diffusion coefficient (ADC) of the largest lesion was calculated. Patients were dichotomized by immediate surgical outcome into high- and low-risk groups (with and without residual disease, respectively) with subsequent survival analysis using the Kaplan-Meier curve and log-rank test. Multivariable Cox proportional hazards regression was used to evaluate the association between DWI-derived results and overall survival. Results: Fifteen (30.0%) patients underwent primary debulking surgery, and 35 (70.0%) patients received neoadjuvant chemotherapy followed by IDS. Complete tumor debulking was achieved in 32 patients. Patients with residual disease after debulking surgery had reduced overall survival (p = 0.043). The fPCI/ADC was negatively associated with overall survival when accounted for clinicopathological information with a hazard ratio of 1.254 for high fPCI/ADC (95% confidence interval, 1.007-1.560; p = 0.043). Conclusion: A high DWI-derived functional tumor burden was associated with decreased overall survival in patients with advanced OC.

In Vivo and In Vitro Studies of the Steady State Free Precession-Diffusion-Weighted MR Imagings on Low b-value : Validation and Application to Bone Marrow Pathology

  • Byun, Woo-Mok
    • Journal of Yeungnam Medical Science
    • /
    • v.24 no.2
    • /
    • pp.119-128
    • /
    • 2007
  • Purpose : The purpose of this study was a phantom study to measure the diffusion properties of water molecules by steady-state free precession diffusion-weighted imaging (SSFP- DWI) with a low b-value and to determine if this sequence might be useful for application to the evaluation of bone marrow pathology. Materials and methods : 1. The phantom study: A phantom study using two diffusion weighted sequences for the evaluation of the diffusion coefficient was performed. Three water-containing cylinders at different temperatures were designed: phantom A was $3^{\circ}C$, B was $23^{\circ}C$ and C was $63^{\circ}C$. Both SSFP and echo planar imaging (EPI) sequences (b-value: $1000s/mm^2$) were performed for comparison of the diffusion properties. The Signal to noise ratios (SNR) and apparent diffusion coefficient (ADC) values of the three phantoms using each diffusion-weighted sequence were assessed. 2. The Clinical study: SSFP-DWI was performed in 28 patients [sacral insufficiency fractures (10), osteoporotic lumbar compression fractures (10), malignant compression fractures (8)]. To measure the ADC maps, a diffusion-weighted single shot stimulated echo-acquisition mode sequence ($650s/mm^2$) was obtained using the same 1.5-T MR imager Results : For the phantom study, the signal intensity on the SSFP as well as the classic EPI-based DWI was decreased as the temperature increased in phantom A to C. The ADC values of the phantoms on EPI-DWI were $0.13{\times}10^{-3}mm^2/s$ in phantom A, $0.22{\times}10^{-3}mm^2/s$ in B and $0.37{\times}10^{-3}mm^2/s$. in C. The SSFP can be regarded as a DWI sequence in view of the series of signal decreases. Conclusion : Bone marrow pathologies with different diffusion coefficients were evaluated by SSFP-DWI. All benign fractures were hypointense compared to the adjacent normal bone marrow where as the malignant fractures were hyperintense compared to the adjacent normal bone marrow.

  • PDF

The Imaging Features of Desmoid Tumors: the Usefulness of Diffusion Weighted Imaging to Differentiate between Desmoid and Malignant Soft Tissue Tumors

  • Lee, Seung Baek;Oh, Soon Nam;Choi, Moon Hyung;Rha, Sung Eun;Jung, Seung Eun;Byun, Jae Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.3
    • /
    • pp.162-170
    • /
    • 2017
  • Purpose: To evaluate the imaging findings of desmoid tumors using various imaging modalities and to evaluate whether diffusion-weighted imaging (DWI) can help differentiate between desmoid and malignant tumors. Materials and Methods: The study included 27 patients with pathologically confirmed desmoid tumors. Two radiologists reviewed 23 computed tomography (CT), 12 magnetic resonance imaging (MRI) and 8 positron emission tomography-computed tomography (PET-CT) scans of desmoid tumors and recorded data regarding the shape, multiplicity, size, location, degree of enhancement, and presence or absence of calcification or hemorrhage. The signal intensity of masses on T1- and T2-weighted imaging and the presence or absence of whirling or band-like low signal intensity on T2-weighted imaging were recorded. The apparent diffusion coefficient (ADC) values of the desmoid tumors in nine patients with DWIs were compared with the ADC values of 32 malignant tumors. The maximum standardized uptake value ($SUV_{max}$) on PET-CT images was measured in 8 patients who underwent a PET-CT. Results: The mean size of the 27 tumors was 6.77 cm (range, 2.5-26 cm) and four tumors exhibited multiplicity. The desmoid tumors were classified by shape as either mass forming (n = 18), infiltrative (n = 4), or combined (n = 5). The location of the tumors was either intra-abdominal (n = 15), within the abdominal wall (n = 8) or extra-abdominal (n = 4). Among the 27 tumors, 21 showed moderate to marked enhancement and 22 showed homogeneous enhancement. Two tumors showed calcifications and one displayed hemorrhage. Eleven of the 12 MR T2-weighted images showed whirling or band-like low signal intensity areas in the mass. The mean ADC value of the desmoid tumors ($1493{\times}10^{-6}mm^2/s$) was significantly higher than the mean of the malignant soft tissue tumors ($873{\times}10^{-6}mm^2/s$, P < 0.001). On the PET-CT images, all tumors exhibited an intermediate $SUV_{max}$ (mean, 3.7; range, 2.3-4.5). Conclusion: Desmoids tumors showed homogenous, moderate to marked enhancement on CT and MRI scans and a characteristic whirling or band-like pattern on T2-weighted images. DWI can be useful for the differentiation of desmoid tumors from malignant soft tissue tumors.

Hyperoxia-Induced ΔR1: MRI Biomarker of Histological Infarction in Acute Cerebral Stroke

  • Kye Jin Park;Ji-Yeon Suh;Changhoe Heo;Miyeon Kim;Jin Hee Baek;Jeong Kon Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.446-454
    • /
    • 2022
  • Objective: To evaluate whether hyperoxia-induced ΔR1 (hyperO2ΔR1) can accurately identify histological infarction in an acute cerebral stroke model. Materials and Methods: In 18 rats, MRI parameters, including hyperO2ΔR1, apparent diffusion coefficient (ADC), cerebral blood flow and volume, and 18F-fluorodeoxyglucose uptake on PET were measured 2.5, 4.5, and 6.5 hours after a 60-minutes occlusion of the right middle cerebral artery. Histological examination of the brain was performed immediately following the imaging studies. MRI and PET images were co-registered with digitized histological images. The ipsilateral hemisphere was divided into histological infarct (histological cell death), non-infarct ischemic (no cell death but ADC decrease), and nonischemic (no cell death or ADC decrease) areas for comparisons of imaging parameters. The levels of hyperO2ΔR1 and ADC were measured voxel-wise from the infarct core to the non-ischemic region. The correlation between areas of hyperO2ΔR1-derived infarction and histological cell death was evaluated. Results: HyperO2ΔR1 increased only in the infarct area (p ≤ 0.046) compared to the other areas. ADC decreased stepwise from non-ischemic to infarct areas (p = 0.002 at all time points). The other parameters did not show consistent differences among the three areas across the three time points. HyperO2ΔR1 sharply declined from the core to the border of the infarct areas, whereas there was no change within the non-infarct areas. A hyperO2ΔR1 value of 0.04 s-1 was considered the criterion to identify histological infarction. ADC increased gradually from the infarct core to the periphery, without a pronounced difference at the border between the infarct and non-infarct areas. Areas of hyperO2ΔR1 higher than 0.04 s-1 on MRI were strongly positively correlated with histological cell death (r = 0.862; p < 0.001). Conclusion: HyperO2ΔR1 may be used as an accurate and early (2.5 hours after onset) indicator of histological infarction in acute stroke.

Quantitative Thoracic Magnetic Resonance Criteria for the Differentiation of Cysts from Solid Masses in the Anterior Mediastinum

  • Eui Jin Hwang;MunYoung Paek;Soon Ho Yoon;Jihang Kim;Ho Yun Lee;Jin Mo Goo;Hyungjin Kim;Heekyung Kim;Jeanne B. Ackman
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.854-861
    • /
    • 2019
  • Objective: To evaluate quantitative magnetic resonance imaging (MRI) parameters for differentiation of cysts from and solid masses in the anterior mediastinum. Materials and Methods: The development dataset included 18 patients from two institutions with pathologically-proven cysts (n = 6) and solid masses (n = 12) in the anterior mediastinum. We measured the maximum diameter, normalized T1 and T2 signal intensity (nT1 and nT2), normalized apparent diffusion coefficient (nADC), and relative enhancement ratio (RER) of each lesion. RERs were obtained by non-rigid registration and subtraction of precontrast and postcontrast T1-weighted images. Differentiation criteria between cysts and solid masses were identified based on receiver operating characteristics analysis. For validation, two separate datasets were utilized: 15 patients with 8 cysts and 7 solid masses from another institution (validation dataset 1); and 11 patients with clinically diagnosed cysts stable for more than two years (validation dataset 2). Sensitivity and specificity were calculated from the validation datasets. Results: nT2, nADC, and RER significantly differed between cysts and solid masses (p = 0.032, 0.013, and < 0.001, respectively). The following criteria differentiated cysts from solid masses: RER < 26.1%; nADC > 0.63; nT2 > 0.39. In validation dataset 1, the sensitivity of the RER, nADC, and nT2 criteria was 87.5%, 100%, and 75.0%, and the specificity was 100%, 40.0%, and 57.4%, respectively. In validation dataset 2, the sensitivity of the RER, nADC, and nT2 criteria was 90.9%, 90.9%, and 72.7%, respectively. Conclusion: Quantitative MRI criteria using nT2, nADC, and particularly RER can assist differentiation of cysts from solid masses in the anterior mediastinum.

Analysis of a Comparability Test between LX Detergent Cleaning Solution and OC Detergent Cleaning Solution Using OC Sensor PLEDIA (OC Sensor PLEDIA를 이용한 LX Detergent Cleaning Solution과 OC Detergent Cleaning Solution의 동등성 평가)

  • Cha, Kyung Jae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.1
    • /
    • pp.19-31
    • /
    • 2021
  • This study aimed at comparing the performance of imported LX detergent cleaning solution (LX-CS) and the self-manufactured OC cleaning solution (OC-CS), based on functional and quantitative analysis. The functional analysis was carried out using apparent diffusion coefficient (ADC) values. For quantitative analysis, precision, linearity, and carry-over rates were measured with commercial control materials according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. Using OC-Sensor PLEDIA (Eiken Chemical, Japan), the ADC value of all cuvettes satisfied the acceptance criteria. For quantitative analysis, precision was less than 5.0% for the two products, and carry-over rates were less than ±1.00%. The linearity slopes and r2 values were 1.0017 and 0.9982 in the LX-CS, and 0.9924 and 0.9996 in the OC-CS, respectively. The correlation coefficient (r) was found to be 0.9997. Also, the percent difference in correlation with 40 artificial-stool specimens was less than 10% and the p-value was less than 0.1. The result of standard deviation ratio (D: ±1 SD ratio) was similar for both products. In conclusion, the functional and quantitative analyses of the two products were compared and showed similar results. In the future, the self-manufactured OC-CS will be able to provide a much more stable and faster supply than the imported LX-CS.

Diagnostic Performance of Diffusion Weighted Imaging of Malignant and Benign Pulmonary Nodules and Masses: Comparison with Positron Emission Tomography

  • Usuda, Katsuo;Sagawa, Motoyasu;Motono, Nozomu;Ueno, Masakatsu;Tanaka, Makoto;Machida, Yuichiro;Maeda, Sumiko;Matoba, Munetaka;Kuginuki, Yasuaki;Taniguchi, Mitsuru;Tonami, Hisao;Ueda, Yoshimichi;Sakuma, Tsutomu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4629-4635
    • /
    • 2014
  • Background: Diffusion-weighted imaging (DWI) makes it possible to detect malignant tumors based on the diffusion of water molecules. However, it is uncertain whether DWI has advantages over FDG-PET for distinguishing malignant from benign pulmonary nodules and masses. Materials and Methods: One hundred-forty-three lung cancers, 17 metastatic lung tumors, and 29 benign pulmonary nodules and masses were assessed in this study. DWI and FDG-PET were performed. Results: The apparent diffusion coefficient (ADC) value ($1.27{\pm}0.35{\times}10^{-3}mm^2/sec$) of malignant pulmonary nodules and masses was significantly lower than that ($1.66{\pm}0.58{\times}10^{-3}mm^2/sec$) of benign pulmonary nodules and masses. The maximum standardized uptake value (SUVmax: $7.47{\pm}6.10$) of malignant pulmonary nodules and masses were also significantly higher than that ($3.89{\pm}4.04$) of benign nodules and masses. By using optimal cutoff values for ADC ($1.44{\times}10^{-3}mm^2/sec$) and for SUVmax (3.43), which were determined with receiver operating characteristics curves (ROC curves), the sensitivity (80.0%) of DWI was significantly higher than that (70.0%) of FDG-PET. The specificity (65.5%) of DWI was equal to that (65.5%) of FDG-PET. The accuracy (77.8%) of DWI was not significantly higher than that (69.3%) of FDG-PET for pulmonary nodules and masses. As the percentage of bronchioloalveolar carcinoma (BAC) component in adenocarcinoma increased, the sensitivity of FDG-PET decreased. DWI could not help in the diagnosis of mucinous adenocarcinomas as malignant, and FDG-PET could help in the correct diagnosis of 5 out of 6 mucinous adenocarcinomas as malignant. Conclusions: DWI has higher potential than PET in assessing pulmonary nodules and masses. Both diagnostic approaches have their specific strengths and weaknesses which are determined by the underlying pathology of pulmonary nodules and masses.

Diffusion Weighted Imaging Can Distinguish Benign from Malignant Mediastinal Tumors and Mass Lesions: Comparison with Positron Emission Tomography

  • Usuda, Katsuo;Maeda, Sumiko;Motono, Nozomu;Ueno, Masakatsu;Tanaka, Makoto;Machida, Yuichiro;Matoba, Munetaka;Watanabe, Naoto;Tonami, Hisao;Ueda, Yoshimichi;Sagawa, Motoyasu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6469-6475
    • /
    • 2015
  • Background: Diffusion-weighted magnetic resonance imaging (DWI) makes it possible to detect malignant tumors based on the diffusion of water molecules. It is uncertain whether DWI is more useful than positron emission tomography-computed tomography (PET-CT) for distinguishing benign from malignant mediastinal tumors and mass lesions. Materials and Methods: Sixteen malignant mediastinal tumors (thymomas 7, thymic cancers 3, malignant lymphomas 3, malignant germ cell tumors 2, and thymic carcinoid 1) and 12 benign mediastinal tumors or mass lesions were assessed in this study. DWI and PET-CT were performed before biopsy or surgery. Results: The apparent diffusion coefficient (ADC) value ($1.51{\pm}0.46{\times}10^{-3}mm^2/sec$) of malignant mediastinal tumors was significantly lower than that ($2.96{\pm}0.86{\times}10^{-3}mm^2/sec$) of benign mediastinal tumors and mass lesions (P<0.0001). Maximum standardized uptake value (SUVmax) ($11.30{\pm}11.22$) of malignant mediastinal tumors was significantly higher than that ($2.53{\pm}3.92$) of benign mediastinal tumors and mass lesions (P=0.0159). Using the optimal cutoff value (OCV) $2.21{\times}10^{-3}mm^2/sec$ for ADC and 2.93 for SUVmax, the sensitivity (100%) by DWI was not significantly higher than that (93.8%) by PET-CT for malignant mediastinal tumors. The specificity (83.3%) by DWI was not significantly higher than that (66.7%) for benign mediastinal tumors and mass lesions. The accuracy (92.9%) by DWI was not significantly higher than that (82.1%) by PET-CT for mediastinal tumors and mass lesions. Conclusions: There was no significant difference between diagnostic capability of DWI and that of PET-CT for distinguishing mediastinal tumors and mass lesions. DWI is useful in distinguishing benign from malignant mediastinal tumors and mass lesions.

Does the ADC Map have Additional Clinical Significance Compared to the DWI in the Brain Infarction? (뇌경색에서 확산강조영상과 비교하여 현성확산계수 지도의 부가적인 임상적 중요성이 있는가?)

  • Choi, Sunseob;Ha, Dong-Ho;Kang, Myong-Jin;Lee, Jin Hwa;Yoon, Seong Kuk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.267-274
    • /
    • 2013
  • Purpose : To re-evaluate additional clinical significance of the apparent diffusion coefficient (ADC) map in the inference of infarction stage, authors studied the evolution patterns of the DWI and the ADC map of the brain infarction. Materials and Methods: In 127 patients with cerebral infarctions, including follow-up checks, 199 studies were performed. They were classified as hourly (117 studies)-, daily (108 studies)-, weekly (62 studies)-based groups. The signal intensity (SI) was measured at the core of the infarction and contralateral area with ROI of 0.3 $cm^2$ or more on the images of the DWI and the ADC map, and calculated the ratios of SI and ADC value of the infarction area / contralateral normal area, and compared the patterns of the change according to the evolution. Results: Infarction was detected as early as 1 hour after the attack, and the ratio of SI in the DWI became over than 2 after 12 hours, which showed a plateau until the 6th day. Thereafter, it decreased slowly to 1 on the 30th day, and changed to lower SI than the surrounding brain. The ratio in the ADC map became 0.46 in 24 hours after the attack, and increased slowly to 1 in the 15th day. Thereafter, it became a higher value than the surrounding brain. Overall, the ratio in the ADC map changed earlier than in the DWI, and the ratio curves showed inverse pattern each other according to the evolution of the infarction. Conclusion: The evolution patterns of infarction on the ADC map showed an inverse curve of DWI curve, which means that the ADC value is accurately predictable from DWI, and the ADC map joined with the DWI seems helpful in the determination of subacute infarction between 15 to 30 days.

Transient Splenial Lesions in the Splenium of Corpus Callosum in Seven Patients: MR Findings and Clinical Correlations (뇌량 팽대의 일과성 병변: 7명의 환자에서의 자기공명 영상소견과 임상 양상의 연관성)

  • Park, Ju Young;Lee, In Ho;Song, Chang June;Hwang, Hee Youn
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Purpose : The purpose of this study is to correlate the imaging findings and the clinical findings in patients with transient splenial lesions (TSL). Materials and Methods: Total of 7 patients (M: F = 4: 3; age range 11 - 38 years, mean age 25.5 years) were studied between November 2006 and April 2011. The MRI findings and clinical findings in all patients were retrospectively reviewed. The location, MR signal intensity, restricted diffusion, enhancement pattern and reversibility from the follow up images were reviewed. Clinical features were reviewed with respect to the presented symptoms, signs, treatment and outcome. Results: The lesions were located in the splenium of corpus callosum in all patients. All lesions showed high signal intensity on diffusion weighted imaging (DWI), and six patients showed restricted diffusion on the apparent diffusion coefficient (ADC) map. ADC map was not available in one patient. All lesions (n = 7) showed high signal intensity on the T2 weighted image (T2WI). Five of the patients (71.4%) with follow up images (range 7 - 34 days) showed complete resolution of focal high signal intensity on DWI, with recovery of ADC values as well as T2WI. After contrast media administration, none of the lesions showed any enhancements. All lesions with various etiologies including TB medication were developed in younger age patients and showed reversibility after the acceptable period of minimum 7 days with conservative treatment. Conclusion: All TSL showed nonspecific imaging findings, including restricted diffusion on DWI and ADC map on the initial images. However, reversibility of the lesions and the young age preference can be a characteristic finding of TSL with acceptable period of minimum 7 days. In addition, to keep it in mind that various etiologies including TB medication may cause TSL, is important for radiologists as well as clinicians.