• Title/Summary/Keyword: Apparent activation energy

Search Result 217, Processing Time 0.022 seconds

Effect of Zine Oxide Size and Oxygen Pressure on the Magnetic Properties of (Ni, Zn) Ferrite Powders Prepared by Self-propagating High Temperature Synthesis (ZnO의 입도와 산소압이 고온연소합성법으로 제조된 Ni-Zn Ferrite 분말의 자기적 특성에 미치는 영향)

  • Choi, Yong;Cho, Nam-Ihn;Hahn, Y.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.78-84
    • /
    • 1999
  • $(Ni, Zn)Fe_2O_4$ powders were prepared through self-propagating high temperature synthesis reaction and the effects of initial zinc oxide powder size and oxygen pressure on the magnetic properties of the final combustion products were studied. The ferrite powders were combustion synthesized with iron, iron oxide, nickel oxide, and zinc oxide powders under various oxygen pressures of 0.5~10 atmosphere after blended in n-hexane solution for 5 minutes with a spex mill, followed by dried at 120 $^{\circ}C$ in vacuum for 24 hours. The maximum combustion temperature and propagating rate were about 1250 $^{\circ}C$ and 9.8 mm/sec under the tap density, which were decreased with decreasing ZnO size and oxygen pressure. The final product had porous microstructure with spinel peaks in X-ray spectra. As the ZnO particle size in the reactant powders and oxygen pressure during the combustion reaction increase, coercive force, maximum magnetization, residual magnetization, squareness ratio were changed from 1324 Oe, 43.88 emu/g, 1.27 emu/g, 0.00034 emu/gOe, 37.8$^{\circ}C$ to 11.83 Oe, 68.87 emu/g, 1.23 emu/g, 0.00280 emu/gOe, 43.9 $^{\circ}C$ and 7.99 Oe, 75.84 emu/g, 0.791 emu/g, 0.001937 emu/gOe, 53.8 $^{\circ}C$ respectively. Considering the apparent activation energy changes with oxygen pressure, the combustion reaction significantly depended on initial oxygen pressure and ZnO particle size.

  • PDF

Preparation and Characterization of Cellulose Nano-Whiskers Extracted from Microcrystalline Cellulose by Acid Hydrolysis (산 가수분해를 이용하여 microcrystalline cellulose로부터 추출 된 cellulose nano-whisker의 특성분석)

  • Jeong, Hae-Deuk;Yoon, Chang-Rok;Lee, Jong-Hyeok;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • Cellulose nanowhiskers (CNW) gamered increasing interest for their remarkable reinforcement of polymer composites. In this work, we were to produce cellulose whiskers from commercially available microcrystalline cellulose (MCC) by acid hydrolysis with sulfuric and hydrochloric acids. Electron microscopy found that each acid produced sililar cellulose crystals of diameters ranging from 20 to 30 nm and lengths ranging from 200 to 300 nm. Moreover, all samples showed remarkable flow birefringence through crossed polarization filters. Conductometric titration of CNW suspensions revealed that the sulfuric acid treated sample had a surface charge of between 140.00 mmol/kg and 197.78 mmol/kg due to sulfate groups, while that of the hydrochloric acid treated sample was undetectable. Thermogravimetric analysis showed that the thermal decomposition temperature and apparent activation energy (evaluated by Broido's method at different stages of thermal decomposition.) of H1-CNW - prepared by hydrolysis with hydrochloric acid - was higher than those of S1-CNW and S2-CNW - prepared by hydrolyzing MCC with sulfuric acid.

Influence of Ga Content on the Ionic Conductivity of Li1+XGaXTi2-X(PO4)3 Solid-State Electrolyte Synthesized by the Sol-Gel Method

  • Seong-Jin Cho;Jeong-Hwan Song
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.185-193
    • /
    • 2024
  • In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 ℃, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 ℃. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 ℃ to 1,000 ℃ at 100 ℃ intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TG-DTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 ℃ and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3Ti1.7(PO4)3 pellet sintered at 900 ℃ was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solid-state electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 ℃ had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.

Strength Development Characteristics of Clay Stabilized with Electric Furnace Steel Slag (전기로 제강슬래그로 안정화된 연약점토의 강도 발현 특성)

  • Hyeongjoo Kim;Taegew Ham;Taewoong Park;Taeeon Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.29-37
    • /
    • 2024
  • This study aimed to investigate the changes in chemical components that occur when weak clay is mixed with steel slag modified with calcium oxide, and to understand the expression characteristics of compressive strength according to hydrophilicity and curing time. XRF testing, SEM imaging, vane shear strength and uniaxial compressive strength testing were conducted. Calcium (Ca) released from the steel slag increases the Ca content in clay by increasing the number of crystal particles and forming a coating layer known as calcium silicate hydrate (CaO-SiO2-H2O) through chemical reactions with SiO2 and Al2O3 components. The weak clay stabilized with steel slag is classified into an initial inactive zone where strength relatively does not increase and an activation zone where strength increases over curing time. The vane shear strength of the initial inactive area was found to be 4.4 to 18.4 kN/m2 in the state of the weight mixing ratio Rss 30% (steel slag 30% + clay 70%). In the case of the active area, the maximum uniaxial compressive strength increased to 431.8 kN/m2 after 480 hours of curing time, which increased due to the apparent adhesion strength of clay through pozzolanic reaction. Therefore, considering the strength expression characteristics of stabilized mixed clay based on the mixing ratio (Rss) during the recycling of steel slag can enhance its practicality in civil engineering sites.

Kinetics of Silica Sorption and Desorption in Soil as affected by pH and Temperature (pH 와 온도(溫度)에 따른 토양(土壤)의 규산(硅酸) 흡(吸) · 탈착(脫着)에 대(對)한 역학적(力學的) 연구(硏究))

  • Lee, Sang-Eun;Neue, Heins Ulitz
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.342-356
    • /
    • 1992
  • Kinetic studies using stirred-flow methods were conducted with the Luisiana soil at three pH levels(pH 5, 6.5, and 8) and three temperature levels(10, 25, and $40^{\circ}C$) to explore effects on the rate of silica retention and release and to find out reaction mechanisms. In this study the maximum silica retention could not be obtained for long enough experimental time. The silica sorption isorption was C type fitted well to Freundlich equation. The pH of the soil suspension increased by the silica release process at low pH treatments(pH 5 and 6.5), while decreased at high pH treatment(pH 8). From the above findings It can be deduced that the mechanism of silica retention is a multilayer forming process to change the ligand form depending on pH condition. In the proposed mechanism the sorbed silica provide new binding sites for additional sorption of silica, while the activation energy for the formation of subsequent layers increases correspondingly. The silica retention and release process were well described by first-order and parabolic diffusion equation. However, clear interpretation for silica sorption mechanism using these equations could not be made. The validity of the fraction term (Fa and Fd) included in first-order and parabolic diffusion equation requires further examinations because the temperature effect on apparent rate constant shows no constant trends among temperature treatments, while there was a good trend in Elovich and modified Freundlich equation where the fraction term was not included.

  • PDF

Interface Reaction of Molten Converter Slag and Sintered CaO Pellet (용융 전로슬래그와 소결 CaO 펠렛 사이의 계면반응)

  • Kim Yaung-Hwan;Ko In-Yang
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • As a basic study of the re-using molten converter slag as an ordinary portland cement by conversion process, molten slag and sintered CaO pellet was reacted each other. The dissolution rate of the sintered CaO pellet into the molten slag was measured and the changes of the reaction layer was also investigated. The converter slag reagent-grade $SiO_2$ added was melted and hold for 30 minutes in MgO crucible between $1350∼1500 ^{\circ}C$. Then sintered CaO pellet heated at the same temperature was dipped into the molten slag and hold for 10∼30 min. After the reaction, the crucible was cooled in air and the specimen was cut off to the horizontal direction of the crucible. The dissolution rate of CaO pellet was measured by the change of the radius of sintered CaO pellet and the interface layer was observed by SEM/EDX and XRD. The dissolution rate of sintered CaO pellet contacted with the slag of basicity 1 was 9.8 $\mu\textrm{m}$/min at $1350^{\circ}C$ and increased to 18.0 $\mu\textrm{m}$/min at $1500^{\circ}C$. The rate was slightly decreased to 7.6 $\mu\textrm{m}$/min at $1350^{\circ}C$ and 15.0 $\mu\textrm{m}$/min at $V^{\circ}C$ in the slag of basicity 2. The dissolution rate of CaO in converter slag was followed to the rule of Arrhenius' temperature dependency, and the apparent activation energy of the dissolution of CaO was 36 kcal/mole. In case of the slag basicity of 1, the thickness of $C_2$S layer was 64-118 $\mu\textrm{m}$ and the thickness of $C_3$S was 28∼90 $\mu\textrm{m}$ for 10∼30 minutes at $1500^{\circ}C$. And the thickness of the $C_3$S layer was 90∼120 $\mu\textrm{m}$ at the same conditions in the slag basicity of 2.

Rheological Properties of ${\beta}-Glucan$ Isolated from Non-waxy and Waxy Barley (메성 및 찰성보리 ${\beta}-Glucan$의 리올로지 특성)

  • Choi, Hee-Don;Park, Yong-Gon;Jang, Eun-Hee;Seog, Ho-Moon;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.590-597
    • /
    • 2000
  • The rheological properties of ${\beta}-glucans$ isolated from non-waxy and waxy barley were investigated. ${\beta}-Glucan$ solutions showed pseudoplastic properties and their behaviors were explained by applying Power law model in the range of concentrations$(1{\sim}4%)$ and temperatures$(20{\sim}65^{\circ}C)$. The effects of temperature and concentration on the apparent viscosity at $700\;s^{-1}$ shear rate were examined by applying Arrhenius equation and power law equation, and their effect was more pronounced in waxy ${\beta}-glucan$ solutions. The activation energy for flow of ${\beta}-glucan$ solutions decreased with the increase of concentration, and the concentration-dependent constant A increased with the increase of temperature. The intrinsic viscosity of waxy ${\beta}-glucan$ was higher than that of non-waxy ${\beta}-glucan$. The transition from dilute to concentrate region occurred at a critical coil overlap parameter $C^*[{\eta}]=0.02.$ The slopes of non-waxy and waxy ${\beta}-glucan$ at $C[{\eta}] were similar, but the slope of waxy ${\beta}-glucan$ at $C[{\eta}]>C^*[{\eta}]$ was higher than that of non-waxy ${\beta}-glucan$. Dynamic viscoelasticity measurement showed that cross-over happened, and storage modulus was higher than loss modulus at frequency range above cross-over. ${\beta}-Glucan$ solutions formed weak gels after stored for 24 hr.

  • PDF