• Title/Summary/Keyword: Apparent activation energy

Search Result 216, Processing Time 0.023 seconds

Creep Behavior Analysis of 25Cr-20Ni Stainless Steels With Omega Methods (오스테나이트계 25Cr-20Ni 스테인리스강의 $\Omega$ 법을 이용한 고온 크리프 거동 해석)

  • Park, In-Duck;Nam, Ki- Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.117-122
    • /
    • 2001
  • For two kinds of 25Cr-20Ni stainless steels, SUS310J1TB TB and SUS310S with and without a small amount of Nb and N, creep behavior has been studied in a stress and temperature range from 147 to 392MPa and from 923 to 973K with a special reference to tertiary creep. The average creep life of SUS310J1TB was about 100 times longer than that of the SUS310S. The apparent activation energy for the initial creep rate was 330 kJ/mol in SUS310J1TB, while that of the SUS310S was 274 kJ/mol in a power law creep region and 478 kJ/mol in a region of power law breakdown (PLB). The activation energy for SUS310S below PLB is close to the that for self-diffusion. When compensating for the temperature dependence of the Young's modulus and the omega value, it was found that the apparent activation energy for SUS310J1TB was reduced to the activation energy for diffusion of chromium atom in a gamma steel. The stress exponent of SUS310S was about 12 above PLB and 5.1 in a power law creep region. Notwithstanding that the creep condition for SUS310J1TB was in a power law creep region, its stress exponent was 8.3 larger than that of SUS310S corresponding to the same creep conditions. This was ascribed to the presence of fine precipitates in SUS310J1TB.

  • PDF

A Study on the Activation Energy and Characteristics of the Heat Decomposition of Flour (밀가루의 열분해 특성과 활성화 에너지에 관한 연구)

  • Kwon, Sung-Yul;Choi, Jae-Wook;Lee, Dong-Hoon;Choi, Jae-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.55-62
    • /
    • 2009
  • After examining the characteristics of the heat decomposition of the 80~120mesh flour using the Mini cup pressure vessel test and determining the apparent activation energy in a spontaneous combustion, the conclusion is as follows. The heat decomposition of flour occurs at around $100^{\circ}C$ and the peak for the maximum rise in pressure appears at around $290^{\circ}C$. The decomposition pressure against various temperature in the vessel shows the maximum value of $4.7kg/cm^2$ approximately at $440^{\circ}C$. When the thickness of the sample is 3cm, the maximum temperature and the critical temperature of ignition are $398^{\circ}C$ and $204.5^{\circ}C$, respectively; the critical temperature is $194.5^{\circ}C$ when the thickness of the sample is 5cm, and $182.5^{\circ}C$ when the sample is 7cm. In addition, the apparent velocity calculated using the method of least squares is 35.0407Kcal/mol.

Studies on the Kinetics for the Formation Reaction $Ti_3AI$ by SHS (Self-propagating High-temperatuer Synthesis) Method (자체반응열 고온합성법에 의한 $Ti_3AI$ 생상반응의 동력학적 연구)

  • 전광식
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.569-574
    • /
    • 1998
  • The thickness of flame zone reaction rate and apparent activation energy in the formation reaction of $Ti_3AI$ intermetallic compound were investigated using SHS method which sustains the reaction spontaneously and utilizes the heat generated by thye exothermic reaction itself. In this reaction the thickness of flame zone was 1.4 mm and the reaction rate was $0.4g/\textrm{cm}^2{\cdot}sec$. Also the apparent activation energy calculated using from the experimental data obtained by controlling the realtive green density was 40kJ/mol.

  • PDF

The Effect of Surface Treatment on Creep Behaviors of Mg Alloy (마그네슘 합금의 크리이프 거동에 표면처리가 미치는 영향)

  • Kang, Dae-Min;An, Jung-O;Kang, Min-Cheol
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.347-353
    • /
    • 2009
  • The apparent activation energy, the applied stress exponent, and rupture life have been measured from creep experiments over the range of $200^{\circ}C$ to $220^{\circ}C$ and the applied stress range of 64MPa to 94MPa. The materials were used AZ31 magnesium alloys treated by plasma electrolytic oxidation of $20{\mu}m$ and $40{\mu}m$ at surface to investigate the its influence on creep behavior, and creep tests were carried out under constant applied stress and temperature. The experimental results showed that the dipper the thickness of surface treatment the higher the activation energy and stress exponent. And the higher temperature and applied stress, the lower stress exponent and activation energy, respectively. Also the dipper the thickness of surface treatment the longer creep rupture time.

Creep Behavior Analysis of Pure Ti by Omega Method (Ti의 ${\Omega}$법을 이용한 고온 크리프 거동해석)

  • Cho, Ji-Hwa;Lee, Hen-Six;Jeong, Soon-Uk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.388-393
    • /
    • 2004
  • Creep behavior of Ti had been studied in a stress from 9.8 to 29.4 MPa and temperature rang from 873K to 973K with a special reference to tertiary creep. It was found that stress exponent of Ti was larger than that of the general pure metal and the compound metal. The relationship between true strain and strain rate in tertiary creep was appeared as the equation, $ln{\dot{e}}$ = $ln{\dot{e}}_{0}$ + ${\Omega}$ e Also, Apparent activation energy of was appeared as 274.92kJ/mol by using the equation ${\dot{\varepsilon}}_{0}$ = A ${\sigma }_{0}^{\ast_0}$ exp$(-Q_{0}/RT)$

  • PDF

Estimation of the Apparent Activation Energy of the Cement Mortar Incorporating Admixtures Considering Setting Time (혼화재치환 시멘트 모르터의 응결시간을 이용한 겉보기 활성화에너지 산정)

  • Choi, Hyun-Kyu;Son, Ho-Jung;Baek, Dae-Hyun;Lim, Choon-Keun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.343-344
    • /
    • 2010
  • This study compares the apparent activation energy(Ea) by ASTM C 1074 with that by setting time. As the result of this study, it is found that Ea by setting time was ranged from 15~21 KJ/mol. This value is smaller than that 30~50 KJ/mol by ASTM C 1074.

  • PDF

A Study of Threshold stress during High Temperature Creep of $\textrm{BN}_f$/Al-5, wt% Mg Metal Matrix Composite (BN 입자 강화 Al-5wt% Mg 기지 복합재료의 고온 크립 변형에서의 임계응력 해석)

  • Song, M.H.;Kwon, H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.187-191
    • /
    • 2000
  • High temperature creep behaviour of Al-5 wt% Mg alloy reinforced with 7.5% BN flakes was studied. The composite specimens showed two main creep characteristics : (1) the value of the apparent stress exponent of the composite was high and varied with applied stress (2) the apparent activation energy for creep was much larger than that for self-diffusion in aluminum The true stress exponent of the composite was set equal to 5. Temperature dependence of the threshold stress of the composite was very strong. Which could not be rationalized by allowing for the temperature dependence of the elastic modulus change. AIN particles which were incorporated into the Al matrix during fabrication of the composite by the PRIMEXTM method were found to be effective barriers to dislocation motion and to give rise the threshold stress during creep of the composite

  • PDF

Prediction model for the hydration properties of concrete

  • Chu, Inyeop;Amin, Muhammad Nasir;Kim, Jin-Keun
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.377-392
    • /
    • 2013
  • This paper investigates prediction models estimating the hydration properties of concrete, such as the compressive strength, the splitting tensile strength, the elastic modulus,and the autogenous shrinkage. A prediction model is suggested on the basis of an equation that is formulated to predict the compressive strength. Based on the assumption that the apparent activation energy is a characteristic property of concrete, a prediction model for the compressive strength is applied to hydration-related properties. The hydration properties predicted by the model are compared with experimental results, and it is concluded that the prediction model properly estimates the splitting tensile strength, elastic modulus, and autogenous shrinkage as well as the compressive strength of concrete.

Effect of Monobutyl Tinoxide Catalyst in Esterification Reaction between Succinic Acid and 1,4-butanediol (Succinic Acid과 1,4-butanediol간의 에스테르화반응에서 Monobutyl Tinoxide 촉매의 영향)

  • Park, Keun-Ho;Kim, Duck-Sool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.362-369
    • /
    • 2009
  • Esterification reaction between succinic acid and 1,4-butanediol was kinetically investigated in the presence of monobutyl tinoxide catalysts at $150{\sim}190^{\circ}C$. The reaction rates measured by the amount of distilled water from the reaction vessel. The esterification reaction was carried out under the first order conditions with respect to the concentration of reactants, respectively. The overall reaction order was 2nd. The linear relationship was shown between apparent reaction rate constant and reciprocal absolute temperature. By the Arrhenius plot the activation energy have been calculated as 87.567 kJ/mol under monobutyl tinoxide catalyst and also apparent reaction rate constant, k' was found to obey first kinetics with respect to the concentration of catalyst.

Estimation of Compressive strength of the Fly Ash Substitution cement mortar by Equivalent Age (등가재령에 의한 플라이애시 치환 시멘트 모르타르의 강도증진해석)

  • Son, Ho-Jungn;Han, Sang-Yoon;Cheong, Sang-Hyeon;Ahn, Sang-Ku;Han, Cheon-Goo;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.105-107
    • /
    • 2012
  • This study was conducted to investigate the strength development of fly ash concrete using the strength development estimation for the ready mixed concrete for construction of nuclear reactors. The findings are as follows. First, the higher the curing temperature becomes, the shorter the setting time becomes. In addition, the compressive strength also increased as the curing temperature gets higher. The apparent activation energy derived from ASTM C 1074 showed 34.75 KJ/mol. The results of concrete strength estimation confirmed that Gompertz model formula has good accuracy.

  • PDF