• 제목/요약/키워드: Apparent activation energy

검색결과 216건 처리시간 0.023초

산 가수분해를 이용하여 microcrystalline cellulose로부터 추출 된 cellulose nano-whisker의 특성분석 (Preparation and Characterization of Cellulose Nano-Whiskers Extracted from Microcrystalline Cellulose by Acid Hydrolysis)

  • 정해득;윤창록;이종혁;방대석
    • Elastomers and Composites
    • /
    • 제45권1호
    • /
    • pp.51-57
    • /
    • 2010
  • 본 연구에서는 친환경적인 특징을 가지면서도 우수한 기계적 특성을 가지고 있어 고분자 복합재료의 보강제로 주목 받고 있는 Cellulose nanowhisker (CNW) 를 염산 혹은 황산을 사용한 산가수분해 방법을 이용하여 Microcrystalline cellulose (MCC) 로 부터 추출하였다. 염산 혹은 황산을 사용하여 추출된 CNW는 직경이 20 에서 30nm 정도였고, 길이가 200 에서 300 nm 로써, 형상학적 측면에서 유사한 특성을 가지는 것을 확인하였다. 또한 전해질 용액의 전기전도도를 이용한 적정 (conductometric titration) 결과 황산을 이용하여 제조되어진 CNW의 경우, 셀룰로오스 표면의 sulfate group 에 의해 나타나는 표면전하 값이 각각 140, 197.78 mmol/kg으로 나타났으며, 염산을 이용하여 제조되어진 CNW 의 경우 셀룰로오스 표면에 약한 전하 값을 가져 표면전하 값을 구할 수 없었다. 황산을 이용하여 추출된 CNW의 열중량 분석 결과 염산을 이용하여 추출된 CNW와 비교하여 열분해 온도가 급격히 감소하는 것을 확인할 수 있었으며, Broido's method를 이용하여 정의 되어진 열분해 거동에 대한 활성화 에너지 역시 상대적으로 낮음을 확인할 수 있었다.

전기로 제강슬래그로 안정화된 연약점토의 강도 발현 특성 (Strength Development Characteristics of Clay Stabilized with Electric Furnace Steel Slag)

  • 김형주;함태규;박태웅;김태언
    • 한국지반환경공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.29-37
    • /
    • 2024
  • 본 연구는 산화칼슘 개질제로 제강슬래그를 사용하여 연약점토와 혼합 시 발생하는 화학적 성분의 변화가 수경성 및 양생시간에 따른 압축강도 발현 특성을 파악하고자 XRF시험과 SEM 촬영, 베인전단강도, 일축압축강도시험을 수행하였다. 제강슬래그로부터 용출되는 칼슘(Ca)은 점토 내 Ca 함량을 증가시키고, SiO2 및 Al2O3 성분과의 화학적 반응으로 칼슘실리카게이트 수화물 (CaO-SiO2-H2O) 반응으로 점토의 피막층이 형성되어 결정체 입자수를 증가시킨다. 따라서, 중량혼합비 Rss 30%(제강슬래그 30% + 점토 70%) 상태에서 초기 비활성영역의 베인전단강도는 4.4~18.4kN/m2로 나타났다. 활성영역의 경우 양생시간 480시간 경과 시 최대일축압축강도는 431.8kN/m2까지 증가되었으며, 이는 포졸란 반응에 의해 점토의 겉보기 점착(Attraction) 강도를 증가시킨다. 본 연구를 통해 토목현장에서 제강슬래그의 재활용을 위해 연약점토와 혼합 시 제강슬래그의 혼합율(Rss)에 따라 연약점토는 강도발현이 되므로 활용성을 높일 수 있다.

Influence of Ga Content on the Ionic Conductivity of Li1+XGaXTi2-X(PO4)3 Solid-State Electrolyte Synthesized by the Sol-Gel Method

  • Seong-Jin Cho;Jeong-Hwan Song
    • 한국재료학회지
    • /
    • 제34권4호
    • /
    • pp.185-193
    • /
    • 2024
  • In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 ℃, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 ℃. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 ℃ to 1,000 ℃ at 100 ℃ intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TG-DTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 ℃ and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3Ti1.7(PO4)3 pellet sintered at 900 ℃ was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solid-state electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 ℃ had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.

pH 와 온도(溫度)에 따른 토양(土壤)의 규산(硅酸) 흡(吸) · 탈착(脫着)에 대(對)한 역학적(力學的) 연구(硏究) (Kinetics of Silica Sorption and Desorption in Soil as affected by pH and Temperature)

  • 이상은
    • 한국토양비료학회지
    • /
    • 제25권4호
    • /
    • pp.342-356
    • /
    • 1992
  • 규산(硅酸)의 흡(吸) 탈착기구(脫着機構)를 밝히기 위하여 pH 3수준(水準)(pH 5, 6.5, 8)과 온도(溫度) 3수준(水準)을 두고 stirred-flow 방법(方法)을 이용(利用)한 kinetic study를 실내실험(室內實驗)으로 수행(遂行)하였다. 실험(實驗) 결과(結果)는 아래와 같다. 1. 규산(硅酸)의 흡(吸) 탈착량(脫着量)은 실험기간내(實驗期間內)에 최대치(最大値)에 도달(到達)하지 않고 계속(繼續) 증가(增加)하였다. 2. 규산(硅酸)의 흡(吸) 탈착량(脫着量)은 pH증가(增加)와 온도(溫度) 증가(增加)에 따라 크게 증가(增加)하였으며 pH의 영향(影響)은 온도(溫度)의 영향(影響)에 비(比)하여 컸다. 3. 규산(硅酸)의 등온(等溫) 흡착(吸着)은 C type 형태(形態)인 것으로 나타났으며 Freundlich 등온(等溫) 흡착식(吸着式)을 따르는 것으로 나타났다. 4. 탈착(脫着) 과정후(過程後)의 pH 변화(變化)는 낮은 pH처리(處理) 조건(條件)(pH 5, 6.5)에서는 증가(增加)하는 반면(反面) 높은 pH 조건(條件)에서는 감소(減少)하였다. 위의 결과(結果)들을 종합(綜合)하여 볼때 규산(硅酸)의 토양흡착(土壤吸着) 기구(機構)는 다분자층(多分子層) 흡착(吸着)으로서 흡착(吸着)된 규산(硅酸)이 새로운 흡착(吸着)자리를 제공(提供)하나 흡착(吸着)에너지는 흡착량(吸着量)이 배가(培加)될수록 지수적(指數的)으로 감소(減少)되며, 한편 pH 조건(條件)에 따라 흡착(吸着) ligand 형태(形態)가 변(變)하는 것으로 보였다. 5. 규산(硅酸) 흡(吸) 탈착(脫着)의 역학(力學)은 first-order와 parabolic diffusion 역학(力學) 등식(等式)에 잘 부합(附合)되나 이들을 이용(利用)한 흡착기구(吸着機構)에 대(對)한 설명(說明)은 본(本) 실험(實驗)에서 어려웠다. 6. First-order와 parabolic diffusion 역학(力學) 등식(等式)에 사용(使用)되는 fraction term(Fa와 Fd)은 반응속도(反應速度)에 미치는 온도(溫度)의 영향(影響)의 평가(評價)시 나쁜 영향(影響)을 끼치므로 이에 대(對)한 연구(硏究)가 필요(必要)한 것으로 보였다.

  • PDF

용융 전로슬래그와 소결 CaO 펠렛 사이의 계면반응 (Interface Reaction of Molten Converter Slag and Sintered CaO Pellet)

  • 김영환;고인용
    • 자원리싸이클링
    • /
    • 제13권1호
    • /
    • pp.47-53
    • /
    • 2004
  • 용융 전로슬래그를 보통 포틀랜드 시멘트로 전환하여 활용하기 위한 목적으로, 용융 슬래그와 소결 CaO 펠렛을 상호 반응시켜, 슬래그의 염기도 및 반응온도에 따른 CaO의 슬래그 중으로의 용해속도 및 반응생성층을 조사하였다. 전로슬래그에 사전에 계산된 양의 시약급 SiO$_2$를 첨가하여 MgO 도가니에 넣고 $1350∼1500 ^{\circ}C$로 30분간 가열ㆍ용해하여 균질화 한 후 같은 온도로 가열해 둔 소결 CaO 펠렛을 투입하여 10∼30분간 반응시켰다. 반응 후 급냉한 시편을 도가니의 직경방향으로 절단해서 펠렛 단면의 CaO 직경 변화를 측정하여 CaO의 용해속도를 조사하고, 계면 생성층을 SEM/EDX로 관찰하였다. 전로슬래그의 염기도를 1로 조절한 경우, CaO의 용해속도(반응계면의 이동속도)는 $1350 ^{\circ}C$에서 9.8$mu extrm{m}$/min 였고, 온도상승에 따라 $^1500 {\circ}C$에서 18.0$\mu\textrm{m}$/min으로 증가하였다. 염기도를 2로 조절한 경우는 각각 7.6$\mu\textrm{m}$/min, 15.0$\mu\textrm{m}$/min으로 조금 감소하였다. CaO의 용해속도는 Arrhenius의 온도와존성을 만족하며, CaO 용해반응의 겉보기 활성화에너지 값은 36 kcal/mole이었다. 슬래그의 염기도가 1인 경우. $1500 ^{\circ}C$에서 10∼30분간 반응시켰을 때 생성된 $C_2$S의 두께는 64∼118$\mu\textrm{m}$, $C _3$S층의 두께는 28∼90$\mu\textrm{m}$이었다. 한편, 슬래그의 염기도가 2인 경우, $1500^{\circ}C$에서 10∼30분간 반응시켰을 때 형성된 $C_3$S층의 두께는 90∼120$\mu\textrm{m}$ 이었다.

메성 및 찰성보리 ${\beta}-Glucan$의 리올로지 특성 (Rheological Properties of ${\beta}-Glucan$ Isolated from Non-waxy and Waxy Barley)

  • 최희돈;박용곤;장은희;석호문;이철호
    • 한국식품과학회지
    • /
    • 제32권3호
    • /
    • pp.590-597
    • /
    • 2000
  • ${\beta}-Glucan$의 점증제 및 겔화제로서의 이용성을 규명하기 위하여 메성 및 찰성보리 ${\beta}-glucan$ 용액의 리을로지 특성을 비교하였다. 메성 및 찰성보리 ${\beta}-glucan$ 용액 모두 의가소생 유체 특성을 나타내었으며, Power law mdel에 잘 적용되었다. Arrhenius 식에 의해 구한 층밀림 속도 $700s^{-1}$에서의 겉보기 점도의 활성화에 너지는 농도가 1%에서 4%로 .증가함에 따라 메성 ${\beta}-glucan$의 경우 20.01에서 16.78kj/mol로, 찰성 ${\beta}-glucan$의 경우 지수의 경우 27.18에서 17.82kj/mol로 감소하였으며, 지수함수식에 의해 구한 농도의존성 상수인 A는 온도가 $20^{circ}C$에서 $65^{circ}C$로 증가함에 따라 메성 ${\beta}-glucan$의 경우 $0.37%^{-1}$에서 $0.42%^{-1}$로, 찰성 ${\beta}-glucan$의 경우 $0.49%^{-1}$에서 $0.57%^{-1}$로 증가하였다. 찰성보리 ${\beta}-glucan$의 고유점도는 2.38dL/g으로 메성보리 ${\beta}-glucan$의 1.60dL/g보다 높게 나타났으며, 비점도와 환원농도의 관계에서 구한 critical coil overlap parameter($C^*[{\eta}]$)를 경계로 기울기가 달라져 $C[{\eta}] 영역에서는 메성 및 찰성보리 ${\beta}-glucan$ 간에 차이가 나지 않았지만 $C[{\eta}]>C^*[{\eta}]$ 영역에서는 각각 2.907과 3.757을 나타내었다. 동적점탄성 측청 결과 진동수 변환중 cross-over가 일어나고 이후의 진동수 영역에서는 저장탄성율이 손실탄성율보다 높은 값을 나타내었으며, 24시간 경과 후 겔을 형성하여 겔화제로서의 이용 가능성을 보여주었다.

  • PDF