• Title/Summary/Keyword: Apparent Bone Density

Search Result 33, Processing Time 0.036 seconds

Correlation Among Permeability, Apparent Density, And Porosity of Human Lumbar Vertebral Trabecular Bone (인체 요추해면골의 배류계수, 겉보기밀도, 공극비 사이의 상관관계에 관한 연구)

  • 홍정화;강신일
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.333-338
    • /
    • 1997
  • Abnormal intraosseous flow and pressure in trabecular bone could cause various pathological conditions such as osteonecrosis and osteoarthritis. Characteristics of intraosseous fluid flow and pressure generation in porous trabecular bone can be significantly affected by the permeability. Factors which determine the permeability could be the porosity and apparent density of trabecular bone. However, there is little data on the permeability and the relationship among the permeability. porosity, and apparent density of trabecular bone. In this study. the permeability. porosity, and apparent density of human lumbar vertebral trabecular bone were experimentally measured. Also, a power relationship among the permeability, porosity, and apparent density was investigated to understand effects of the porosity and apparent density variations on the permeability of trabecular bone based on Kozeny-Carman equation. A near linear relationship between intraosseous fluid flow and time indicated that the fluid phase flowed through the pores in trabecular bone is governed by the permeability. The permeability of trybecular bone was found to have a significant power relationship with the porosity and apparent density (r: 0.84 and $\textit{p}$< 0.0005). The power relationship could be useful to determine the permeability of trybecular bone after measuring the apparent density and porosity.

  • PDF

Correlations Among Speed of Sound, Broadband Ultrasonic Attenuation, Broadband Ultrasonic Reflection, and Bone Density in Bovine Cancellous Bone

  • Lee, Kang-Il;Choi, Bok-Kyoungi;Yoon, Suk-Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2E
    • /
    • pp.69-77
    • /
    • 2003
  • Correlations between acoustic properties and bone density have been investigated in bovine cancellous bone. Speed of sound (SOS), broadband ultrasonic attenuation (BUA), and broadband ultrasonic reflection (BUR) were measured in 10 defatted bovine cancellous bone specimens in vitro. SOS showed a significant correlation with the apparent density of the bone. A comparable correlation was observed between BUA and the apparent density. BUR was rather highly correlated with the apparent density. It was shown that BUR had a weak correlation with BUA and a significant correlation with SOS. This indicates that the parameter BUR can provide important information that may not be contained in BUA and SOS and, therefore, can be useful as an alternative diagnostic parameter of osteoporosis. As expected, a linear combination of all three ultrasonic parameters in a multiple regression model resulted in a significant improvement in predicting the apparent bone density.

Feasibility of a Nonlinear Acoustic Method for the Assessment of Bone Status and Osteoporosis in Trabecular Bone

  • Lee, Kang Il
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1849-1854
    • /
    • 2018
  • The present study aims to investigate the feasibility of using a simple nonlinear acoustic method for the assessment of bone status and osteoporosis in trabecular bone. Correlations of linear and nonlinear ultrasound parameters with the apparent bone density were obtained in 32 bovine femoral trabecular bone samples. Highly significant positive correlations were observed between the apparent bone density and the two linear ultrasound parameters, the speed of sound (SOS) and the normalized broadband ultrasound attenuation (nBUA), with Spearman's correlation coefficients of r = 0.85 and 0.77. In contrast, the apparent bone density was found to be negatively correlated with the nonlinear ultrasound parameter introduced in the present study, the logarithmic difference between the power spectrum levels of the fundamental frequency and the second harmonic (PSL1-PSL2), with the highest correlation coefficient of r = -0.92. These results suggest that the PSL1-PSL2, in addition to the SOS and the nBUA, may be useful for the assessment of bone status and osteoporosis.

The Syudy of Young's Modulus in Trabecular Bone with Bone Cement Injection (골강화제가 주입된 망상골의 영률에 관한 연구)

  • Moon, H.W.;Lee, M.K.;Park, J.Y.;Chae, S.W.;Lee, T.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1368-1372
    • /
    • 2003
  • PMMA which is used as the bone cement for vertebroplasty is able to be a supporter, as a fixing supporter role, for broken trabecular structure, caused by the compressed fracture of spine on aged osteoporosis. In this thesis, as experimenting apparent density of bone pieces, we have figured out support extent of Young's modulus as classifying the bone pieces injected PMMA and the others which are not. In case of low apparent density of PMMA in some bone, Young's modulus seems to be more supportable to bone. On the other hand, if apparent density of bones is normal, injection of PMMA is not very effective on improvement in Young's modulus of bone cement injection.

  • PDF

A Finite Element Simulation of Cancellous Bone Remodeling Based on Volumetric Strain (스폰지 뼈의 Remodeling 예측을 위한 체적 변형률을 이용한 유한요소 알고리즘)

  • Kim, Young;Vanderby, Ray
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.373-384
    • /
    • 2000
  • The goal of this paper is to develop a computational method to predict cancellous bone density distributions based upon continuum levels of volumetric strain. Volumetric strain is defined as the summation of normal strains, excluding shear strains, within an elastic range of loadings. Volumetric strain at a particular location in a cancellous structure changes with changes of the boundary conditions (prescribed displacements, tractions, and pressure). This change in the volumetric strain is postulated to predict the adaptive change in the bone apparent density. This bone remodeling theory based on volumetric strain is then used with the finite element method to compute the apparent density distribution for cancellous bone in both lumbar spine and proximal femur using an iterative algorithm, considering the dead zone of strain stimuli. The apparent density distribution of cancellous bone predicted by this method has the same pattern as experimental data reported in the literature (Wolff 1892, Keller et al. 1989, Cody et al. 1992). The resulting bone apparent density distributions predict Young's modulus and strength distributions throughout cancellous bone in agreement with the literature (Keller et al. 1989, Carter and Hayes 1977). The method was convergent and sensitive to changes in boundary conditions. Therefore, the computational algorithm of the present study appears to be a useful approach to predict the apparent density distribution of cancellous bone (i.e. a numerical approximation for Wolff's Law)

  • PDF

Nondestructive Estimation of Mechanical Orthogonality of Human Trabecular Bone by Computed Tomography and Spherical Indentation Test

  • Bae Tae Soo;Lee Tae Soo;Choi Kuiwon
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.117-122
    • /
    • 2005
  • The elastic modulus and the apparent density of the trabecular bone were evaluated from spherical indentation tests and Computed Tomography (CT) and their relationship was quantified. The femurs were prepared for trabecular bone analysis. Embedded with respect to their anatomical orientation, the transverse planes of the trabecular bone specimens were scanned at 1㎜ intervals using a CT scanner. The metaphyseal regions of femurs were sectioned with a diamond-blade saw, producing 8㎜ cubes. Using a specially made spherical indentation tester, the cubes were mechanically tested in the anterior-posterior (AP), medial-lateral (ML), and inferior-superior (IS) directions. After determination of modulus from the mechanical testing, the apparent densities of the specimens were measured. The results showed that the IS modulus was significantly greater than both the AP and ML moduli with the AP modulus greater than the ML modulus. This demonstrated that orthogonality was a structural characteristic of the trabecular bone. The power relationship between the modulus and the apparent density was also found to be statistically significant.

Influence of Cortical Endplates on Ultrasonic Properties of Trabecular Bone (피질골판이 해면질골의 초음파 특성에 미치는 영향)

  • Kim, Yoon Mi;Lee, Kang Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.103-111
    • /
    • 2015
  • The present study investigated the influence of thick cortical endplates on the ultrasonic properties of trabecular bone in a femur with a high fracture risk. Twelve trabecular bone samples were prepared from bovine femurs, and acrylic plates with thicknesses of 1.25, 1.80, and 2.75 mm were manufactured to simulate the cortical endplates using acrylic with a density and a sound speed similar to cortical bone. Although the thickness of the acrylic plates attached to the two sides of the trabecular bone increased, high correlations were observed between the speed of sound and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.80-0.86. High correlations were also observed between the attenuation coefficient at 0.5 MHz and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.84-0.91. These results suggest that the speed of sound and attenuation coefficient at a specific frequency measured in a femur with relatively thick cortical endplates compared to the calcaneus could be used as indices for predicting the bone mineral density of the femur.

Acoustic Properties of Bovine Cancellous Bone in the Frequency Range of 0.5-2 MHz

  • Lee Kang Il;Roh Heui-Seol;Yoon Suk Wang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.373-376
    • /
    • 2002
  • Most previous studies using ultrasound for osteoporosis diagnosis have employed ultrasound in a frequency range of 0.2-1 MHz. In this study, acoustic properties of the 12 defatted bovine cancellous bone specimens were investigated in vitro. Speed of sound (SOS) and broadband ultrasonic attenuation (BUA) were measured using three matched pairs of transducers with the center frequencies of 1, 2.25, and 3.5 MHz, respectively, in order to cover a broad frequency range of 0.5-2 MHz. The relative orientation between ultrasonic beam and bone specimens was the mediolateral (ML) direction of the bovine tibia. SOS showed significant linear positive correlations with apparent density for all three pairs of transducers of 1 MHz, 2.25 MHz, and 3.5 MHz, respectively. BUA showed relatively weak correlations with apparent density for the pairs of transducers of 1 MHz and 2.25 MHz. Furthermore, in the measurement with the pair of 3.5 MHz transducers, BUA was independent of apparent density. SOS and BUA were only weakly correlated with each other. The linear combination of SOS and BUA showed significant correlations with apparent density. These results suggest that the frequency range up to 1.5 MHz may be also useful in the osteoporosis diagnosis.

  • PDF

The Study of Changes in Compressive Strength of Trabecular Bone with PMMA Injection in Vertebroplasty (척추성형술에서 PMMA 주입에 의한 망상골의 압축강도 변화 연구)

  • 문희옥;이문규;김정규;이태수;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.369-373
    • /
    • 2003
  • The compressed fracture of spine caused by osteoporosis is one of the most frequent diseases in bone fracture. Recently the vertebroplasty has drawn much attention as a medical treatment for the compressed fracture of spine, which strengthens the vertebral body and corrects deformity, and relieves pain in patients by injecting bone cement. But because there were no research about strengthening of mechanical properties of verbral body in bone cement injection, in this study, based on the properties of PMMA, we had measured the Young's modulus for different apparent densities of intact trabecular bone and PMMA injected one from a porcine and a cadaver. Young's modulus to apparent density had a form of a power series in intact trabecular bone and had a linear relation in PMMA injected bone.

Ultrasound Attenuation in the Assessment of Bone Mineral Density and Elastic Modulus of Human Trabecular Bone

  • Han, S.M.;Kim, M.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.171-176
    • /
    • 1998
  • The objective of this study was to re-evaluate ultrasound attenuation as an indicator of bone properties. Ultrasound attenuation(BUA), were measured in the three orthogonal directions of trabecular bone cubes, Measurements of bone mineral density(BMD) were made using quantitative computed tomography and apparent density by weighing bone specimens and measuring their volume. Ultrasonic modulus was calculated from the standard equation with apparent density and ultrasound velocity. Ultrasound attenuation at a frequency of 0.5 MHz and BUA were correlated with BMD and ultrasonic modulus in the anterior/posterior, medial/lateral, and superior/inferior directions. Analysis of correlations demonstrated that attenuation at 0.5 MHz was superior to BUA in describing both BMD and elastic modulus of trabecular bone. This result may be used to improve current ultrasound diagnostic techniques for assessing bone status.

  • PDF