• 제목/요약/키워드: Apoptotic cell death

검색결과 1,137건 처리시간 0.028초

Armeniacae Semen Extract Induces Apoptosis in Mouse N2a Neuroblastoma Cells

  • Kim, Beum-Seuk;Song, Yun-Kyung;Lim, Hyung-Ho
    • 대한한의학회지
    • /
    • 제26권4호
    • /
    • pp.12-21
    • /
    • 2005
  • Objectives: In the present study, we investigated whether an aqueous extract of Armeniacae semen induces apoptotic neuronal cell death upon mouse N2a neuroblastoma cells. Methods: 1. Cell viability was determined by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTI) assay. 2. For in situ detection of apoptotic cells, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, 4,6-diamidino-2-phenylindole (DAPI) staining. 3. The fraction of cells was revealed by flow cytometric analysis used that. 4. For detection of apoptotic DNA cleavage, DNA fragmentation assay was performed. 5. For detection of bax and bcl-2, Western blot analysis was performed. 6. Caspase enzyme activity was measured using caspase-3 assay. Results: From the present results, N2a neuroblastoma cells treated with Armeniacae semen extract exhibited several characteristics of apoptosis. A treatment of Armeniacae semen extract was shown to increase the expression of Bax, a proapoptotic protein, and the treatment decreased the expression of Blc2, an anti-apoptotic protein. In addition, Armeniacae semen extract increased the caspase-3 enzyme activity. Conclusions: The present results show that Armeniacae semen extract induces apoptotic cell death in mouse N2a neuroblastoma cells.

  • PDF

NELL2 Function in the Protection of Cells against Endoplasmic Reticulum Stress

  • Kim, Dong Yeol;Kim, Han Rae;Kim, Kwang Kon;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • 제38권2호
    • /
    • pp.145-150
    • /
    • 2015
  • Continuous intra- and extracellular stresses induce disorder of $Ca^{2+}$ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.

Perphenazine and trifluoperazine induce mitochondria-mediated cell death in SH-SY5Y cells

  • Hong, Seok-Heon;Lee, Min-Yeong;Shin, Ki-Soon;Kang, Shin-Jung
    • Animal cells and systems
    • /
    • 제16권1호
    • /
    • pp.20-26
    • /
    • 2012
  • Drug-induced parkinsonism has been associated with an increased risk for Parkinson's disease. Antipsychotic drugs have long been known to cause parkinsonian symptoms. However, it remains unclear whether antipsychotics can directly damage the nigrostriatal pathway. In the present study, we investigated the toxicity mechanism of two typical antipsychotics, perphenazine and trifluoperazine, in a human dopaminergic cell line, SH-SY5Y. Perphenazine and trifluoperazine induced mitochondrial damage as evidenced by fragmentation of mitochondria, activation of Bax, cytochrome c release and a decrease in cellular ATP level. In addition, activation of caspase-3 and apoptotic nuclei were observed following the drug treatment. However, pan-caspase inhibitor did not suppress the cell death induced by the antipsychotics, suggesting that the initiated apoptosis was possibly shifted to necrosis upon caspase inhibition. Damaged mitochondria may have induced oxidative stress since the drug-induced cell death was partially suppressed by an antioxidant. Taken together, our results suggest that perphenazine and trifluoperazine can induce apoptotic cell death in a dopaminergic cell line via mitochondrial damage accompanied by oxidative stress.

Astaxanthin Inhibits $H_2O_2$-Mediated Apoptotic Cell Death in Mouse Neural Progenitor Cells via Modulation of P38 and MEK Signaling Pathways

  • Kim, Jeong-Hwan;Choi, Woo-Bong;Lee, Jong-Hwan;Jeon, Sung-Jong;Choi, Yung-Hyun;Kim, Byung-Woo;Chang, Hyo-Ihl;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권11호
    • /
    • pp.1355-1363
    • /
    • 2009
  • In the present study, the neuroprotective effects of astaxanthin on $H_2O_2$-mediated apoptotic cell death, using cultured mouse neural progenitor cells (mNPCs), were investigated. To cause apoptotic cell death, mNPCs were pretreated with astaxanthin for 8 h and followed by treatment of 0.3 mM $H_2O_2$. Pretreatment of mNPCs with astaxanthin significantly inhibited $H_2O_2$-mediated apoptosis and induced cell growth in a dose-dependent manner. In Western blot analysis, astaxanthin-pretreated cells showed the activation of p-Akt, p-MEK, p-ERK, and Bcl-2, and the reduction of p-P38, p-SAPK/JNK, Bax, p-GSK3b, cytochrome c, caspase-3, and PARP. Because $H_2O_2$ triggers caspases activation, this study examined whether astaxanthin can inhibit caspases activation in $H_2O_2$-treated mNPCs. After $H_2O_2$ treatment, caspases activities were prominently increased, but astaxanthin pretreatment significantly inhibited $H_2O_2$-mediated caspases activation. Astaxanthin pretreatment also significantly recovered the ATP production ability of $H_2O_2$-treated cells. These findings indicate that astaxanthin inhibits $H_2O_2$-mediated apoptotic features in mNPCs. Inhibition assays with SB203580 ($10\;{\mu}M$, a specific inhibitor of p38) and PD98059 ($10\;{\mu}M$, a specific inhibitor of MEK) clearly showed that astaxanthin can inhibit $H_2O_2$-mediated apoptotic death via modulation of p38 and MEK signaling pathways.

Combination of Nimbolide and TNF-α-Increases Human Colon Adenocarcinoma Cell Death through JNK-mediated DR5 Up-regulation

  • Boonyarat, Chantana;Yenjai, Chavi;Reubroycharoen, Prasert;Waiwut, Pornthip
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권5호
    • /
    • pp.2637-2641
    • /
    • 2016
  • Tumor necrosis factor ($TNF-{\alpha}$), an inflammatory cytokine that plays an important role in the control of cell proliferation, differentiation, and apoptosis, has previously been used in anti-cancer therapy. However, the therapeutic applications of $TNF-{\alpha}$ are largely limited due to its general toxicity and anti-apoptotic influence. To overcome this problem, the present study focused on the effect of active constituents isolated from a medicinal plant on $TNF-{\alpha}$-induced apoptosis in human colon adenocarcinoma (HT-29) cells. Nimbolide from Azadirachta indica was evaluated for cytotoxicity by methyl tetrazolium 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and phase contrast microscopy. Effects on apoptotic signaling proteins were investigated using Western blot analysis. Nimbolide showed cytotoxicity against HT-29 cells that was significantly different from the control group (p<0.01), a concentration of $10{\mu}M$ significantly inducing cell death (p<0.01). In combination with $TNF-{\alpha}$, nimbolide significantly enhanced-induced cell death. In apoptotic pathway, nimbolide activated c-Jun N-terminal kinase (JNK) phosphorylation, BH3 interacting-domain death agonist (Bid) and up-regulated the death receptor 5 (DR5) level. In the combination group, nimbolide markedly sensitized $TNF-{\alpha}$-induced JNK, Bid, caspase-3 activation and the up-regulation of DR5. Our findings overall indicate that nimbolide may enhance $TNF-{\alpha}$-mediated cellular proliferation inhibition through increasing cell apoptosis of HT-29 cells by up-reglation of DR5 expression via the JNK pathway.

봉독약침액(蜂毒藥鍼液)에 의한 인체유방암세포(人體乳房癌細胞)의 성장억제(成長抑制) 및 세포사(細胞死)에 관한 연구(硏究) (Induction of the Growth Inhibition and Apoptosis by Beevenom in Human Breast Carcinoma MCF-7 Cells)

  • 여성원;서정철;최영현;장경전
    • Journal of Acupuncture Research
    • /
    • 제20권3호
    • /
    • pp.45-62
    • /
    • 2003
  • Objective : To examine the effects of Beevenom on the cell proliferation of human breast carcinoma cell line MCF-7, we performed various experiments such as does-dependent effect of Beevenom on cell proliferation and viability, morphological changes, and alterations of apoptosis/cell cycle-regulatory gene products. Methods : Beevenom induced cell viability and proliferation of MCF-7 cells in a concentration-dependent manner. The anti-proliferative effect by Beevenom treatment in MCF-7 cells was associated with morphological changes such as membrance shrinking and cell rounding up. Results : Beevenom induced apoptotic cell death in a concentration-dependent manager, which was associated with degradation of ${\beta}$-catenin, an apoptotic target protein. Beevenom induced the Bax expressions, a pro-apoptotic gene, both in protein and mRNA levels, however, the levels of Bcl-$X_{S/L}$ expression, an anti-apoptotic gene, were down-regulated in Beevenom-treated cells. Western blot analysis and RT-PCT data revealed that the levels of cyclin of B1 protein and cyclin E mRNA were reduced by Beevenom treatment in MCF-7 cells, respectively, where as the expression of tumor suppressor p53 and cyclin dependent kinase inhibitor p21 mRNA were markedly increased in a concentration-dependent fashion. Conclusions : Taken together, these findings suggest that Beevenom induced inhibition of human breast cancer cell proliferation is associated with the induction of apoptotic cell death and Beevenom may have therapeutic potential in human breast cancer.

  • PDF

Mechanism of Ethanol-induced Purkinje Cell Death in Developing Rat Cerebellum: Its Implication in Apoptosis and Oxidative Damage

  • Song, Ji-Hoon;Kang, Ji-Hoon;Kang, Hee-Kyung;Kim, Kwang-Sik;Lee, Sung-Ho;Choi, Don-Chan;Cheon, Min-Seok;Park, Deok-Bae;Lee, Young-Ki
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권3호
    • /
    • pp.205-213
    • /
    • 2011
  • Ethanol treatment during the brain growth spurt period has been known to induce the death of Purkinje cells. The underlying molecular mechanisms and the role of reactive oxygen species (ROS) in triggering ethanol-induced Purkinje cell death are, however, largely unresolved. We undertook TUNEL staining, western blotting assay and immunohistochemistry for the cleaved forms of caspase-3 and -9, with calbindin D28K double immunostaining to identify apoptotic Purkinje cells. The possibility of ROS-induced Purkinje cell death was immunohistochemically determined by using anti-8-hydroxy-2'deoxyguanosine (8-OHdG), a specific cellular marker for oxidative damage. The results show that Purkinje cell death of PD 5 rat cerebellum following ethanol administration is mediated by the activation of caspase-3 and -9. However, unexpectedly, TUNEL staining did not reveal any positive Purkinje cells while there were some TUNEL-positive cells in the internal and external granular layer. 8-OHdG was detected in the Purkinje cell layers at 8 h, peaked at 12-24 h, but not at 30 h post-ethanol treatment. No 8-0HdG immunoreactive cells were detected in the internal and external granular layer. The lobule specific 8-OHdG staining patterns following ethanol exposure are consistent with that of ethanol-induced Purkinje cell loss. Thus, we suggest that ethanol-induced Purkinje cell death may not occur by the classical apoptotic pathway and oxidative damage is involved in ethanol-induced Purkinje cell death in the developing cerebellum.

천금위경탕의 인체 폐암세포 증식억제에 관한 연구 (Anti-proliferative Effects of Cheonkumwikyung-tang In A549 Human Lung Carcinoma Cells)

  • 박봉규;박동일
    • 동의생리병리학회지
    • /
    • 제18권4호
    • /
    • pp.1147-1152
    • /
    • 2004
  • To investigate the anti-cancer effects of aqueous extract of Cheonkumwikyung-tang (CKWKT) on the growth of human lung carcinoma cell line A549, we performed various biochemical experiments such as the effects of CKWKT on the cell proliferation and viability, the morphological changes, the effects on expression of apoptosis and cell growth-regulatory gene products. Results obtained are as follow; CKWKT treatment declined the cell viability and proliferation of A549 cells in a concentration-dependent manner. The anti-proliferative effect by CKWKT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. CKWKT treatment induced apoptotic cell death of A549 cells in a concentration-dependent manner, which was associated with inhibition and/or degradation of apoptotic target proteins such poly(ADP-ribose) polymerase, β-catenin and phospholipase C-γ1. Western blot analysis revealed that the levels cyclin-dependent kinase inhibitor p21 expression were induced by CKWKT treatment in A549 cells. Taken together, these findings suggest that CKWKT-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products and CKWKT may have therapeutic potential in human lung cancer.

KR-33028, a Novel Na+/H+ Exchanger-1 Inhibitor, Attenuates Glutamate-Induced Apoptotic Cell Death through Maintaining Mitochondrial Function

  • Lee, Bo-Kyung;Lee, Sun-Kyung;Yi, Kyu-Yang;Yoo, Sung-Eun;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • 제19권4호
    • /
    • pp.445-450
    • /
    • 2011
  • Preciously, we demonstrated that a novel NHE-1 inhibitor, KR-33028 attenuated cortical neuronal apoptosis induced by glutamate. In the present study, we investigated the signaling mechanism of neuroprotective effect of KR-33028 against glutamate-induced neuronal apoptosis, especially focusing on mitochondrial death pathway. Our data showed that glutamate induces a biphasic rise in mitochondrial $Ca^{2+}$ and that KR-33028 significantly prevents the second phase increase, but not the first phase increase in mitochondrial $Ca^{2+}$. Furthermore, KR-33028 restored the ${\Delta}{\Psi}_m$ dissipation and cytochrome c release into cytoplasm induced by glutamate in a concentration-dependent manner. The inhibition of mitochondrial $Ca^{2+}$ overload by ruthenium red also inhibited glutamate-induced apoptotic cell death, mitochondrial membrane potential, ${\Delta}{\Psi}_m$ dissipation and cytochrome c release. These data suggest that inhibition of mitochondrial $Ca^{2+}$ overload is likely to be attributable to anti-apoptotic effect of KR-33028. Taken together, our results suggest that anti-apoptotic effects of NHE-1 inhibitor, KR-33028 may be mediated through maintenance of mitochondrial function.

A Novel Histone Methyltransferase, Kodo7 Induces Histone H3-K9 Methylation and Mediates Apoptotic Cell Death

  • Kim, Sung-Mi;Seo, Sang-Beom
    • International Journal of Oral Biology
    • /
    • 제31권3호
    • /
    • pp.81-86
    • /
    • 2006
  • SET (Suppressor of variegation, Enhancer of zeste, and the Trithorax) domain-containing proteins are known to have methyltransferase activity at lysine residues of histone proteins. In this study, we identified a novel SET domain-containing protein from mouse and named Kodo7. Indeed, Kodo7 has methyltransferase activity at K9 residue of the H3 protein as demonstrated by a histone methyl-transferse activity assay using GST-tagged Kodo7. Confocal microscopy showed that Kodo7 is co-localized with histones in the nucleus. Interestingly, ectopic expression of Kodo7 by transient transfection induced cell death and treatment of the transfectants with a caspase-3 inhibitor, Ac-DEVD-AFC decreased Kodo7-induced apoptosis. These results suggest that Kodo7 induces apoptotic cell death through increased methylation of histones leading to transcriptional repression.