• Title/Summary/Keyword: Apoptotic cell

Search Result 2,143, Processing Time 0.025 seconds

Arctigenin induces caspase-dependent apoptosis in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Lim, HyangI;Seo, Jeong-Yeon;Park, Jong-Hyun;Chun, Hong Sung;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Kim, Do Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.447-456
    • /
    • 2022
  • The present study was carried out to investigate the effect of Arctigenin on cell growth and the mechanism of cell death elicited by Arctigenin were examined in FaDu human pharyngeal carcinoma cells. To determine the apoptotic activity of Arctigenin in FaDu human pharyngeal carcinoma cells, cell viability assay, DAPI staining, caspase activation analysis, and immunoblotting were performed. Arctigenin inhibited the growth of cells in a dose-dependent manner and induced nuclear condensation and fragmentation. Arctigenin-treated cells showed caspase-3/7 activation and increased apoptosis versus control cells. FasL, a death ligand associated with extrinsic apoptotic signaling pathways, was up-regulated by Arctigenin treatment. Moreover, caspase-8, a part of the extrinsic apoptotic pathway, was activated by Arctigenin treatments. Expressions of anti-apoptotic factors such as Bcl-2 and Bcl-xL, components of the mitochondria-dependent intrinsic apoptosis pathway, significantly decreased following Arctigenin treatment. The expressions of pro-apoptotic factors such as BAX, BAD and caspase-9, and tumor suppressor -53 increased by Arctigenin treatments. In addition, Arctigenin activated caspase-3 and poly (ADP-ribose) polymerase (PARP) induced cell death. Arctigenin also inhibited the proliferation of FaDu cells by the suppression of p38, NF-κB, and Akt signaling pathways. These results suggest that Arctigenin may inhibit cell proliferation and induce apoptotic cell death in FaDu human pharyngeal carcinoma cells through both the mitochondria-mediated intrinsic pathway and the death receptor-mediated extrinsic pathway.

Novel non-apoptotic cell death: ferroptosis (새로운 non-apoptotic 세포사멸: ferroptosis)

  • Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.2
    • /
    • pp.174-181
    • /
    • 2017
  • Ferroptosis is a newly recognized type of cell death that results from iron-dependent lipid peroxidation and is different from other types of cell death, such as apoptosis, necrosis, and autophagic cell death. This type of cell death is characterized by mitochondrial shrinkage with an increased mitochondrial membrane density and outer mitochondrial membrane rupture. Ferroptosis can be induced by a loss of activity of system $X_c{^-}$ and the inhibition of glutathione peroxidase 4, followed by the accumulation of lipid reactive oxygen species (ROS). In addition, inactivation of the mevalonate and transsulfuration pathways is involved in the induction of ferroptosis. Moreover, nicotinamide adenine dinucleotide phosphate oxidase and p53 promote ferroptosis by increasing ROS production, while heat shock protein beta-1 and nuclear factor erythroid 2-related factor 2 inhibit ferroptosis by reducing iron uptake. This article outlines the molecular mechanisms and signaling pathways of ferroptosis regulation, and explains the roles of ferroptosis in human disease.

Effect of Anti-apoptotic Agents in Recombinant Chinese Hamster Ovary Cell Expressing Iduronate 2-sulphatase

  • Jeon, Ok-Seon;Chun, Ju-Me;Kang, Seon-Ah;Lee, Sang-Jong;Chun, Gie-Taek;Chang, Yong-Keun;Jeong, Yeon-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.210-213
    • /
    • 2005
  • The suppression of apoptosis during the cell culture might increase recombinant protein production. In the present study, the effects of anti-apoptotic agents on the apoptosis of recombinant Chinese Hamster Ovary cells and the production of Iduronate 2-sulphatase(IDS) were investigated Cell density slightly increased when $2{\mu}M$ of EGCG and $10{\mu}g/mL$ of STR-G were added to culture medium after two days. It was observed that the percentage of apoptotic cells was decreased in the culture with STR-G, and Bcl-2 expression level was enhanced in both culture with STR-G and EGCG. These results suggest that G418 and EGCG are effective anti-apoptotic agents for increasing the productivity of IDS with recombinant CHO-DG44.

  • PDF

Comparative Study of Anti-Apoptotic Genes, Bcl-2 and P35 for the Suppression of Apoptosis Induced in Suspension Culture of Transformed Trichoplusia ni BTI Tn 5B1-4 Cells

  • Lee, Jong-Min;Sohn, Bong-Hee;Kang, Pil-Don;Lee, Sang-Uk;Chung, In-Sik
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.173-181
    • /
    • 2004
  • To delay the onset of apoptosis in the culture, transformed Tn 5B1-4 cells harboring anti-apoptotic genes, bcl-2 and baculovirus p35, have been established and analyzed for their anti-apoptotic ability in suspension culture using spinner flasks. In the suspension culture at agitation speeds of 100 rpm and 200 rpm, the cell growth of cell clone expressing Bcl-2 protein was much higher than other two clones and the maximum cell density of the clone was 6.0 ${\times}$ 10$^{6}$ cells/ml and 6.2 ${\times}$ 10$^{6}$ cells/ml at day three of the incubation. On the other hand, the cell growth of cell clone expressing baculovirus protein P35 was much higher than other two clones in suspension culture at agitation speed of 300 rpm and the maximum cell density of the clone was 6.1 ${\times}$ 10$^{6}$ cells/ml at day three of the incubation. Based on the pattern of genomic DNA laddering and the microscopic observation of apoptotic bodies, the more apoptotic bodies are induced in Tn 5B1-4 control cell clone at higher agitation speed. This result shows that the shear stress can be a main factor in inducing apoptosis in spinner flask culture. At low agitation speed, cell clone expressing Bcl-2 was more effective in delaying the onset of apoptosis than the cell clone expressing P35. On the other hand, at high agitation speed, cell clones expressing baculovirus P35 was more effective in delaying the onset of apoptosis than the cell clone expressing Bcl-2. Therefore, anti-apoptotic genes, bcl-2 and baculovirus p35, can playa distinct role depending on agitation speed in the suspension culture.

Modulating Effect of Lupeol on the Expression Pattern of Apoptotic Markers in 7, 12-Dimethylbenz(a)anthracene Induced Oral Carcinogenesis

  • Manoharan, S.;Palanimuthu, D.;Baskaran, N.;Silvan, S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5753-5757
    • /
    • 2012
  • Apoptosis, also known as cell suicide or programmed cell death, removes unwanted and genetically damaged cells from the body. Evasion of apoptosis is one of the major characteristic features of rapidly proliferating tumor cells. Chemopreventive agents inhibit or suppress tumor formation through apoptotic induction in target tissues. The aim of the present study was to investigate the pro-apoptotic potential of lupeol during 7,12-dimethylbenz(a) anthracene (DMBA) induced hamster buccal pouch carcinogenesis. Topical application of 0.5% DMBA three times a week for 14 weeks in the buccal pouches of golden Syrian hamsters resulted in oral squamous cell carcinoma. The expression pattern of apoptotic markers was analyzed using immunohistochemistry (p53, Bcl-2, Bax) and ELISA reader (caspase 3 and 9). In the present study, 100% tumor formation with defects in apoptotic markerexpression pattern was noticed in hamsters treated with DMBA alone. Oral administration of lupeol at a dose of 50mg/kg bw completely prevented the formation oral tumors as well as decreased the expression p53 and Bcl-2, while increasing the expression of Bax and the activities of caspase 3 and 9. The present study thus indicated that lupeol might inhibit DMBA-induced oral tumor formation through its pro-apoptotic potential in golden Syrian hamsters.

Characterization of Programmed Cell Death in the Silkworm Thoracic Ganglia during Postembryonic Periods

  • Kim, Soon-Ok;Kim, Mi-Young;Song, Hwa-Young;Kim, Jin-Hee;Kang, Pil-Don;Lee, Bong-Hee
    • Animal cells and systems
    • /
    • v.11 no.1
    • /
    • pp.23-31
    • /
    • 2007
  • Programmed cell death was characterized in the silkworm thoracic ganglia TG1, TG2 and TG3 during postembryonic periods by TUNEL assay. Apoptotic cells were detected in the three TGs of all larval stages except for day-1, 2 1st instar larvae, in which no apoptotic cells were found. From day-7 5th larva, the numbers of apoptotic cells were dramatically increased and peaked on day-1 pupa and day-2 pupa and then abruptly decreased. Apoptotic cells finally disappeared in day-1 adult. In-vivo injection of 20-hydroxyecdysone (20E) into day-8 5th larva resulted in a striking decrease of apoptotic cells. Actinomycin D (Act D) or cycloheximide (CHX), injected into hemolymph of day-8 5th larva, resulted in a decrease of apoptotic cells in the three TGs. Injection of caspase-8 and -3 inhibitors also blocked cellular apoptosis. These results will provide valuable information for understanding of cellular changes in the three TGs during metamorphosis of the insect species.

Caffeic Acid Phenethyl Ester Inhibits Cell Proliferation and Induces Apoptosis in Human Ovarian Cancer Cells

  • Park, Hyung-Joo;Yang, Seung-Joo;Mo, Jin-Young;Ryu, Geun-Chang;Lee, Kyung-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.4
    • /
    • pp.196-201
    • /
    • 2010
  • The phenethyl ester of caffeic acid (CAPE), an active component of honeybee propolis extract, is shown to inhibit cancer growth previously. However, studies on human ovarian cancer are largely obscure. This study evaluated the effects of CAPE as a potential anti-proliferative and pro-apoptotic agent in the human ovarian cancer line, OVCAR-3. CAPE treated OVCAR-3 cells showed inhibition of cell viability and proliferation in a dose-dependent manner by WST-1 assay, LDH assay and bromodeoxyuridine (BrdU) incorporation assay. Furthermore, CAPE-mediated OVCAR-3 cell growth inhibition was associated with apoptotic changes as evident by cell cycle arrest and accumulation of cells in the apoptotic phase and DNA fragmentation. Taken together, CAPE inhibits cell proliferation via DNA synthesis reduction and induces apoptotic cell death via DNA damage, thus elucidating a novel, plausible mechanism of CAPE anti-tumorigenic property in OVCAR-3 cells.

Nuclear Factor-κB Activation: A Question of Life or Death

  • Shishodia, Shishir;Aggarwal, Bharat B.
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.28-40
    • /
    • 2002
  • Apoptosis is a mode of cell death that plays an important role in both pathological and physiological processes. Research during the last decade has delineated the entire machinery needed for cell death, and its constituents were found to pre-exist in cells. The apoptotic cascade is triggered when cells are exposed to an apoptotic stimulus. It has been known for several years that inhibitors of protein synthesis can potentiate apoptosis that is induced by cytokines and other inducers. Until 1996, it was not understood why protein synthesis inhibitors potentiate apoptosis. Then three reports appeared that suggested the role of the transcription factor NF-${\kappa}B$ activation in protecting the cells from TNF-induced apoptosis. Since then several proteins have been identified that are regulated by NF-${\kappa}B$ and are involved in cell survival, proliferation, and protection from apoptosis. It now seems that when a cell is attacked by an apoptotic stimulus, the cell responds first by activating anti-apoptotic mechanisms, which mayor may not be followed by apoptosis. Whether or not a cell undergoes proliferation, the survival, or apoptosis, appears to involve a balance between the two mechanisms. Inhibitors of protein synthesis seem to suppress the appearance of protein that are involved in anti-apoptosis. The present review discusses how NF-${\kappa}B$ controls apoptosis.

Optimazation of the Assement and Apotosis of Endocrine-Bisphenol A Disruptors (내분비계장애물질 평가방법의 최적화 및 Apoptosis에 관한 연구)

  • Ahn Kwang-Hyun;Lee Kyung-A;Kim Bong-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.251-259
    • /
    • 2004
  • Xenoestrogens are chemicals with diverse structure that mimic estrogen. Bisphenol A, a monomer of polycarbonate and epoxy resins, has been detected in canned food and human saliva. Bisphenol A stimulate cell proliferation and induce expression of estrogen -response genes in vitro. The purpose of the this study was to evaluate cell proliferation of bisphenol A in the presence of a rat liver 59 mix contaning cytochrome P450 enzymes and Cu (II). The fragmentation of intact DNA, a parameter of apoptotic cell death, was evaluated quantitatively by diphenylamine reaction method. Bisphenol A induced apoptotic cell death in a dose-dependent manner The effect of radical scavenger on the apoptotic cell death induced bisphenol A was investigated. The DNA fragmentation induced by bisphenol A was significantly inhibited by addition of radical scavenger to the culture medium. This indicated that elevated oxidative stress caused by imbalance between the production and removal of free radicals occurred in cells. Taken together, these results suggest that free radical reacts with Cu (II) leading oxidative stress.

Apoptotic Activity of Insect Pathogenic Fungus Paecilomycesc japonica Toward Human Acute Leukemia Jurkat T Cells is Associated with Mitochondria-Dependent Caspase-3 Activation Regulated by Bcl-2

  • Park, Hye-Won;Jen, Do-Youn;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.950-956
    • /
    • 2002
  • The antitumor activity of the insect pathogenic fungus Paecilomyces japonica has been attributed to apoptotic cell death. However, the mechanism underlying the induced apoptosis has not yet been elucidated. In this study, we for the first time show that mitochondria-dependent caspase-3 activation were associated with the apoptotic activity of P. japonica in human acute leukemia Jurkat T cells. When Jurkat T cells were treated with the ethyl acetate extract of P japonica at concentrations ranging from $2-6{\mu}g/ml$, apoptotic cell death. accompanied by several biochemical events such as caspase-9 activation, caspase-3 activation, degradation of poly (ADP-ribose) polymerase (PARP), and apoptotic DNA fragmentation, was induced in a dose-dependent manner. In addition, the release of cytochrome c from mitochondria was detected. Under these conditions, the expression of Fas and Fas-ligand (FasL) remained unchanged. Ethyl acetate extract-induced mitochondrial cytochrome c release, caspase-3 activation, PARP cleavage, and apoptotic DNA fragmentation were suppressed by the ectopic expression of Bcl-2, which is known to block mitochondrial cytochrorme c release. Accordingly, these results demonstrate that P. japonica-induced apoptotic cell death is mediated by a cytochrome c-dependent caspase-3 activation pathway that can be interrupted by Bcl-2.