• Title/Summary/Keyword: Apoptosis.

Search Result 5,699, Processing Time 0.03 seconds

Induction of Apoptosis by Eugenol and Capsaicin in Human Gastric Cancer AGS Cells - Elucidating the Role of p53

  • Sarkar, Arnab;Bhattacharjee, Shamee;Mandal, Deba Prasad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6753-6759
    • /
    • 2015
  • Background: Loss of function of the p53 gene is implicated in defective apoptotic responses of tumors to chemotherapy. Although the pro-apoptotic roles of eugenol and capsaicin have been amply reported, their dependence on p53 for apoptosis induction in gastric cancer cells is not well elucidated. The aim of the study was to elucidate the role of p53 in the induction of apoptosis by eugenol and capsaicin in a human gastric cancer cell line, AGS. Materials and Methods: AGS cells were incubated with or without various concentrations of capsaicin and eugenol for 12 hrs, in the presence and absence of p53 siRNA. Cell cycling, annexin V and expression of apoptosis related proteins Bax, Bcl-2 ratio, p21, cyt c-caspase-9 association, caspase-3 and caspase-8 were studied. Results: In the presence of p53, capsaicin was a more potent pro-apoptotic agent than eugenol. However, silencing of p53 significantly abrogated apoptosis induced by capsaicin but not that by eugenol. Western blot analysis of pro-apoptotic markers revealed that as opposed to capsaicin, eugenol could induce caspase-8 and caspase-3 even in the absence of p53. Conclusions: Unlike capsaicin, eugenol could induce apoptosis both in presence and absence of functional p53. Agents which can induce apoptosis irrespective of the cellular p53 status have immense scope for development as potential anticancer agents.

Inhibitory Effect of Lemon Oil on Apoptosis in Astrocytes (신경교(神經膠) 성상세포(星狀細胞)에서 레몬오일에 의한 세포자멸사(細胞自滅死)의 억제효과(抑制效果))

  • Kim, Jun-Han;Kim, Tae-Heon
    • Journal of Oriental Neuropsychiatry
    • /
    • v.11 no.1
    • /
    • pp.37-46
    • /
    • 2000
  • We investigated the effects of lemon pure essential oils on the heat shock-induced apoptosis in human astrocyte cell line CCF-STTG1. In previous studies, hear shock has been reported to induce the apoptosis or programmed cell death through the activation of caspase-3. Treatment of CCF-STTG1 cells with heat shock markedly induced apoptotic cell death as determined by flow cytometry. Interestingly, pretreatment of CCF-STTG1 cells with lemon pure essential oils inhibited the heat shock-induced apoptosis. Lemon also inhibited the heat shock-induced apoptosis in primary cultured rat astrocytes. To determine whether lemon inhibits the heat shock-induced activation of these apoptotic proteases, activation of CPP32 was assessed by Western blotting. Consistent with flow cytometry, DNA fragmentation and giemsa staining, heat shock-induced activation of CPP32 was blocked by lemon pure essential oil. PARP, cysteine protease substrates were fragmented as a consequence of apoptosis by heat shock. Lemon oil inhibited the PARP fragmentation. This essential oil also inhibited the heat shock-induced activation of caspase-3. These results suggest that lemon pure essential oils may modulate the apoptosis through the activation of the ICE-like caspases.

  • PDF

Inhibitory Effect of Nicotine on Apoptosis Induced by Endoplasmic Reticulum Stress

  • Lee, Dong-Hee
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.240-244
    • /
    • 2007
  • Cigarette smoking causes serious health problems in humans, especially if smoking habits are established during their adolescence. Nicotine is known to mutate DNA and interfere with apoptosis. Apoptosis is considered as a potent defense mechanism against cellular damaging agents. This study aims to investigate the effect of nicotine on the progression of apoptosis induced under ER stress conditions using four different established cell lines: HEK293, 3T3-L1, C2C12, and HepG2. When treated with nicotine, the progression of apoptosis was notably inhibited in the four cell lines according to the assays of caspase-3 activation and DNA fragmentation. In ER-stressed cells, nicotine appears to inhibit the progression of apoptosis in a concentration-dependent manner. When cells were treated with nicotine prior to ER stress, GRP94 level significantly increased compared to other ER stress markers of PDI and GRP78. This observation suggests that the inhibitory effect of nicotine may results from up-regulation of GRP94, an anti-apoptotic chaperone, under nicotine treatment. Taken together, the present study strongly implies that nicotine may inhibit apoptosis, caused by prolonged ER stress, based on promotion of GRP94 expression.

MicroRNA-146a Enhances Helicobacter pylori Induced Cell Apoptosis in Human Gastric Cancer Epithelial Cells

  • Wu, Kai;Yang, Liu;Li, Cong;Zhu, Chao-Hui;Wang, Xin;Yao, Yi;Jia, Yu-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5583-5586
    • /
    • 2014
  • Helicobacter pylori (H. pylori) infection induces apoptosis in gastric epithelial cells, and this occurrence may link to gastric carcinogenesis. However, the regulatory mechanism of H. pylori-induced apoptosis is not clear. MicroRNA-146a has been implicated as a key regulator of the immune system. This report describes our discovery of molecular mechanisms of microRNA-146a regulation of apoptosis in human gastric cancer cells. We found that overexpression of microRNA-146a by transfecting microRNA-146a mimics could significantly enhance apoptosis, and this upregulation was triggered by COX-2 inhibition. Furthermore, we found that microRNA-146a density was positively correlated with apoptosis rates in H. pylori-positive gastric cancer tissues and intratumoral microRNA-146a density was negatively correlated with lymph node metastasis among H. pylori-positive gastric cancer patients. Understanding the important roles of microRNA-146a in regulating cell apoptosis in H. pylori infected human gastric cancer cells will contribute to the development of microRNA targeted therapy in the future.

Induction of Apoptosis in the Testes of SD Rats After Exposure to 2-Bromopropane

  • Kim, Young-Hee;Cho, Sung-Whan;Ha, Chang-Su;Kang, Boo-Hyon
    • Toxicological Research
    • /
    • v.17 no.4
    • /
    • pp.241-248
    • /
    • 2001
  • Exposure to 2-Bromopropane has been known to cause degeneration of male germ cells. However the mechanism underlying this process is poorly understood. The objective of this study was to determine whether or not the exposure of male Sprague-Dawley rats to 2-BP induces apoptosis in male germ cells. Male rats(N=3 or 4 in each group) were orally administered either with the corn oil vehicle (10 ml/kg body weight) or with 2-BP (3,500 mg/kg) once a day for 3 days. The presence of apoptosis was determined by TUNEL detection in situ and by an increase in DNA fragmentation. A low spontaneous incidence of apoptosis was observed in vehicle control animals, especially in pre-meiotic germ cells of stages I-VI and stages XII-XIV the seminiferous tubules. In 2-BP exposure rats, the incidence of apoptosis markedly increased at 4 h, reached a peak at 8 h (about 7-fold over control), and then decreased rapidly to control level by 48 h after the last administration. Although apoptosis induced by 2-BP occurred in all stages of germ cells, it was most pronounced in spermatogonia and early spermatocytes in stages I-VI and stages XII-XIV. Taken together, our results suggest that apoptosis is involved in the toxicity of testicular germ cells resulting in oligospermia or azoospermia after exposure to 2-BP.

  • PDF

Role of Intracellular $Ca^{2+}$ Signal in the Ascorbate-Induced Apoptosis in a Human Hepatoma Cell Line

  • Lee , Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1245-1252
    • /
    • 2004
  • Although ascorbate (vitamin C) has been shown to have anti-cancer actions, its effect on human hepatoma cells has not yet been investigated, and thus, the exact mechanism of this action is not fully understood. In this study, the mechanism by which ascorbate induces apoptosis using HepG2 human hepatoblastoma cells is investigated. Ascorbate induced apoptotic cell death in a dose-dependent manner in the cells, was assessed through flow cytometric analysis. Contrary to expectation, ascorbate did not alter the cellular redox status, and treatment with antioxidants (N-acetyl cysteine and N,N-diphenyl-p-phenylenediamine) had no influence on the ascorbate-induced apoptosis. However, ascorbate induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration. EGTA, an extracellular $Ca^{2+}$ chelator did not significantly alter the ascorbate-induced intracellular $Ca^{2+}$ increase and apoptosis, whereas dantrolene, an intracellular $Ca^{2+}$ release blocker, completely blocked these actions of ascorbate. In addition, phospholipase C (PLC) inhibitors (U-73122 and manoalide) significantly suppressed the intracellular $Ca^{2+}$ release and apoptosis induced by ascorbate. Collectively, these results suggest that ascorbate induced apoptosis without changes in the cellular redox status in HepG2 cells, and that the PLC-coupled intracellular $Ca^{2+}$ release mechanism may mediate ascorbate-induced apoptosis.

Differential Role of protein Kinase C in Ginsenoside $Rh_2$ - induced Apoptosis in SK-N-BE(2) and C6Bu-1 Cells

  • Young Sook Kim;Sun
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.244-252
    • /
    • 1998
  • Ginsenoside Rh, (G-Rh,) from Panax ginseng induced morphological features of apoptosis and DNA fragmentation as a biochemical marker of apoptosis confirmed by TUNEL reaction and agarose gel electrophoresis in human neuroblastoma SK-N-BE(2) and rat glioma C6Bu-1 cells During apoptosis by G-Rh2, protein kinase C (PKC) isoforms were analysed by immunoblotting. In SK-N-BE(2) cells, the levels of a, p and ${\gamma}$ subtypes were increased by undergoing apoptosis, while PKC e isoform increased early in treatment (3 h and 6 h). In addition, PKC s isoform gradually decreased during apoptosis by G-Rh2 and PKC $\theta$ isoform was detected in neither untreated- nor G-Rh1-treated SK-N-BE(2) cells (data not shown). However, no significant changes in the level of S and s isoforms were observed in C6Bu-1 cells undergoing apoptosis by G-Rh2. These results suggest that PKC subtypes may play differential roles in apoptotic signal pathways and their roles can be cell type-specific in apoptosis induced by G-Rh2.

  • PDF

A77 1726 Inhibit NO-induced Apoptosis via PI-3K/AKT Signaling Pathway in Rabbit Articular Chondrocyte

  • Choi, In-Kyou;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • Leflunomide is an immunomodulatory agent used for the treatment of rheumatoid arthritis (RA). Leflunomide known as a regulator of iNOS synthesis which largely decreases NO production in diverse cell type. However, the effect of leflunomide on chondrocyte is still poorly understood. In our previous studies, we have shown that direct production of Nitric oxide (NO) by treating chondrocytes with NO donor, sodium nitroprusside (SNP), causes apoptosis via p38 mitogen-activated protein kinase in association with elevation of p53 protein level, caspase-3 activation. In this study, we characterized the molecular mechanism by which A77 1726 inhibit apoptosis. We found that A77 1726 inhibit NO-induced apoptosis as determined by MTT (Thiazolyl Blue Tetrazolium Bromide) assay and DNA fragmentation. The inhibition of apoptosis by A77 1726 was accompanied by increased PI-3 kinase and AKT activities. So, inhibition of phosphatidylinositol (PI)-3kinase with LY294002 rescued apoptosis. Triciribine, the specific inhibitor of AKT, also abolished anti-apoptotic effect. Our results indicate that A77 1726, the active metabolite of leflunomide, mediates NO-induced apoptosis in chondrocytes by modulating up-regulation of PI-3 kinase and AKT.

  • PDF

IL-4 Suppresses UVB-induced Apoptosis in Skin

  • Hwang, Ha-Young;Choi, Soo-Young;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • In this study, cutaneous role of IL-4 in UVB-induced apoptosis was investigated using transgenic mice with skin-specific expression of IL-4 (IL-4 Tg mice). The transgenic mice did not show any gross clinical abnormalities. However, epidermis was thickened and increased MHC class II positive cells were detected as well as enhanced expression of inflammatory cytokines such as IL-1 and TNF-$\alpha$ in skin. In addition, histological analysis revealed increased infiltration of lymphocytes, acanthosis, hyperkeratosis, and parakeratosis in skin of IL-4 Tg mice. The physiological effect of IL-4 overexpression in skin against environmental stimulus such as UVB was investigated by irradiating wild-type and IL-4 Tg mice with UVB followed by evaluation of apoptosis. The result demonstrated suppressed apoptosis in epidermis of IL-4 Tg mice compared with wild-type mice. To further assess anti-apoptotic function of IL-4 in keratinocytes, stable cell clones were made where IL-4 was constitutively overexpressed and examined for UVB-induced apoptosis. The results showed that apoptosis was remarkably decreased in IL-4 over-expressing cell clones compared with that in mock transfected cells. Collectively, data presented here shows that IL-4 has an inhibitory effect against UVB-induced apoptosis in keratinocytes, suggesting that IL-4 may be an important regulator in cutaneous immunity against UVB.

miR-23a Regulates Cardiomyocyte Apoptosis by Targeting Manganese Superoxide Dismutase

  • Long, Bo;Gan, Tian-Yi;Zhang, Rong-Cheng;Zhang, Yu-Hui
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.542-549
    • /
    • 2017
  • Cardiomyocyte apoptosis is initiated by various cellular insults and accumulated cardiomyocyte apoptosis leads to the pathogenesis of heart failure. Excessive reactive oxygen species (ROS) provoke apoptotic cascades. Manganese superoxide dismutase (MnSOD) is an important antioxidant enzyme that converts cellular ROS into harmless products. In this study, we demonstrate that MnSOD is down-regulated upon hydrogen peroxide treatment or ischemia/reperfusion (I/R) injury. Enhanced expression of MnSOD attenuates cardiomyocyte apoptosis and myocardial infarction induced by I/R injury. Further, we show that miR-23a directly regulates the expression of MnSOD. miR-23a regulates cardiomyocyte apoptosis by suppressing the expression of MnSOD. Our study reveals a novel model regulating cardiomyocyte apoptosis which is composed of miR-23a and MnSOD. Our study provides a new method to tackling apoptosis related cardiac diseases.