• 제목/요약/키워드: Apoptosis related gene

검색결과 350건 처리시간 0.027초

GRIM-19 Expression and Function in Human Gliomas

  • Jin, Yong-Hao;Jung, Shin;Jin, Shu-Guang;Jung, Tae-Young;Moon, Kyung-Sub;Kim, In-Young
    • Journal of Korean Neurosurgical Society
    • /
    • 제48권1호
    • /
    • pp.20-30
    • /
    • 2010
  • Objective : We determined whether the expression of GRIM-19 is correlated with pathologic types and malignant grades in gliomas, and determined the function of GRIM-19 in human gliomas. Methods : Tumor tissues were isolated and frozen at $-80^{\circ}C$ just after surgery. The tissues consisted of normal brain tissue (4), astrocytomas (2), anaplastic astrocytomas (2), oligodendrogliomas (13), anaplastic oligodendrogliomas (11), and glioblastomas (16). To profile tumor-related genes, we applied RNA differential display using a $Genefishing^{TM}$ DEG kit, and validated the tumor-related genes by reverse transcription polymerase chain reaction (RT-PCR). A human glioblastoma cell line (U343MG-A) was used for the GRIM-19 functional studies. The morphologic and cytoskeletal changes were examined via light and confocal microscopy. The migratory and invasive abilities were investigated by the simple scratch technique and Matrigel assay. The antiproliferative activity was determined by thiazolyl blue Tetrazolium bromide (MTT) assay and FACS analysis. Results : Based on RT-PCR analysis, the expression of GRIM-19 was higher in astrocytic tumors than oligodendroglial tumors. The expression of GRIM-19 was higher in high-grade tumors than low-grade tumors or normal brain tissue; glioblastomas showed the highest expression. After transfection of GRIM-19 into U343MG-A, the morphology of the sense-transfection cells became larger and more spindly. The antisensetransfection cells became smaller and rounder compared with wild type U343MG-A. The MTT assay showed that the sense-transfection cells were more sensitive to the combination of interferon-$\beta$ and retinoic acid than U343MG-A cells or antisense-transfection cells; the antiproliferative activity was related to apoptosis. Conclusion : GRIM-19 may be one of the gene profiles which regulate cell death via apoptosis in human gliomas.

측백엽(側柏葉)이 인간 유래 악성 흑색종 세포의 유전자 발현에 미치는 영향 (Effects of Thujae Orientalis Folium (TOF) on Gene Expression of Human melanoma cells (SK-MEL-2))

  • 정민영;김종한;박수연;최정화
    • 한방안이비인후피부과학회지
    • /
    • 제23권2호
    • /
    • pp.81-108
    • /
    • 2010
  • Objective : Thujae Orientalis Folium (TOF) can cool the blood and stop bleeding, eliminate phlegm and relieve cough in Oriental medicine. In addition, the fresh is used alone externally. Recently, TOF is known to have anti-tumor component. And also known to have tyrosinase inhibitory effect. Method : For these reasons, this study was designed to investigate anti-cancer and whitening activities of TOF. In this experiment, effects of TOF on proliferation rates of melanoma cells and on changes in genetic profiles were investigated. The genetic profile for the effect on human derived melanoma cell, SK-MEL-2, was measured using microarray technique, and the functional analysis on these genes was conducted. Results : Total 541 genes were up-regulated and 1,079 genes down-regulated in cells treated with TOF. Genes induced by TOF were mainly concerned with anti-cancer effects and apoptosis. Genes suppresed by TOF were related in extracellular signalling pathway. The network of total protein interactions was measured using cytoscape program, and some key molecules, such as THAP1, MAX1, STAM2, SMAD6, CYCS, PEX5, PSEN1, NONO, MAP2K7 and CREB1 that can be used for elucidation of therapeutical mechanism of medicine in future were identified. Conculusion : These results suggest possibility of TOF as anti-cancer drug for human melanoma. In addition, the present author also suggest that related mechanisms are involved in inhibition of several cancer pathway, activation of apoptosis pathway and suppression of general metabolic pathway.

Toxicogenomic Effect of Liver-toxic Environmental Chemicals in Human Hepatoma Cell Line

  • Kim, Seung-Jun;Park, Hye-Won;Yu, So-Yeon;Kim, Jun-Sub;Ha, Jung-Mi;Youn, Jong-Pil;An, Yu-Ri;Oh, Moon-Ju;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • 제5권4호
    • /
    • pp.310-316
    • /
    • 2009
  • Some environmental chemicals have been shown to cause liver-toxicity as the result of bioaccumulation. Particularly, fungicides have been shown to cause varying degrees of hepatictoxicity and to disrupt steroid hormone homeostasis in in vivo models. The principal objective of this study was to evaluate the liver-toxic responses of environmental chemicals-in this case selected fungicides and parasiticides-in order to determine whether or not this agent differentially affected its toxicogenomic activities in hepatic tumor cell lines. To determine the gene expression profiles of 3 fungicides (triadimefon, myclobutanil, vinclozolin) and 1 parasiticide (dibutyl phthalate), we utilized a modified HazChem human array V2. Additionally, in order to observe the differential alterations in its time-dependent activities, we conducted two time (3 hr, 48 hr) exposures to the respective IC20 values of four chemicals. As a result, we analyzed the expression profiles of a total of 1638 genes, and we identified 70 positive significant genes and 144 negative significant genes using four fungicidic and parasiticidic chemicals, using SAM (Significant Analysis of Microarray) methods (q-value<0.5%). These genes were analyzed and identified as being related to apoptosis, stress responses, germ cell development, cofactor metabolism, and lipid metabolism in GO functions and pathways. Additionally, we found 120 genes among those time-dependently differentially expressed genes, using 1-way ANOVA (P-value<0.05). These genes were related to protein metabolism, stress responses, and positive regulation of apoptosis. These data support the conclusion that the four tested chemicals have common toxicogenomic effects and evidence respectively differential expression profiles according to exposure time.

The effects of early exercise in traumatic brain-injured rats with changes in motor ability, brain tissue, and biomarkers

  • Kim, Chung Kwon;Park, Jee Soo;Kim, Eunji;Oh, Min-Kyun;Lee, Yong-Taek;Yoon, Kyung Jae;Joo, Kyeung Min;Lee, Kyunghoon;Park, Young Sook
    • BMB Reports
    • /
    • 제55권10호
    • /
    • pp.512-517
    • /
    • 2022
  • Traumatic brain injury (TBI) is brain damage which is caused by the impact of external mechanical forces. TBI can lead to the temporary or permanent impairment of physical and cognitive abilities, resulting in abnormal behavior. We recently observed that a single session of early exercise in animals with TBI improved their behavioral performance in the absence of other cognitive abnormalities. In the present study, we investigated the therapeutic effects of continuous exercise during the early stages of TBI in rats. We found that continuous low-intensity exercise in early-stage improves the locomotion recovery in the TBI of animal models; however, it does not significantly enhance short-term memory capabilities. Moreover, continuous early exercise not only reduces the protein expression of cerebral damage-related markers, such as Glial Fibrillary Acid Protein (GFAP), Neuron-Specific Enolase (NSE), S100β, Protein Gene Products 9.5 (PGP9.5), and Heat Shock Protein 70 (HSP70), but it also decreases the expression of apoptosis-related protein BAX and cleaved caspase 3. Furthermore, exercise training in animals with TBI decreases the microglia activation and the expression of inflammatory cytokines in the serum, such as CCL20, IL-13, IL-1α, and IL-1β. These findings thus demonstrate that early exercise therapy for TBI may be an effective strategy in improving physiological function, and that serum protein levels are useful biomarkers for the predicition of the effectiveness of early exercise therapy.

배양한 흰쥐 대뇌세포의 저산소증 모델에서 황련(黃連)이 유전자 표현에 미치는 영향 (Effects of Gene expression by Coptidis chinesis FRANCH. in a Hypoxic Model of Cultured Rat Cortical Cells)

  • 황주원;김경훈;신길조;문일수
    • 대한한방내과학회지
    • /
    • 제32권2호
    • /
    • pp.301-321
    • /
    • 2011
  • Objectives : The purpose of this investigation was to evaluate the effects of Coptidis chinesis FRANCH. on the alteration of gene expression in a hypoxic model using cultured rat cortical cells. Methods : E18 rat cortical cells were grown in neurobasal medium containing B27 supplement. On 12 DIV, water extract from Coptidis chinesis FRANCH. was added ($20{\mu}g/ml$) to the culture media 4 hrs. On 14 DIV, cells were given hypoxic insult (2% $O_2$/5% $CO_2$, $37^{\circ}C$, 3 hrs), returned to normoxia and cultured for another 24 hrs. Total RNA was extracted from Coptidis chinesis FRANCH. treated and untreated cultures and alterations in the gene expression were analysed by microarray using rat 5K-TwinChips. Results : Effects on some of the genes whose functions were implicated in neural viability were as follows: the expression of apoptosis-related genes such as Clu (Global M = 1.3), of presynaptic inhibition's genes such as Penk-rs (Global M = 1.97), and of innate immuniti's such as Crp (Global M = 1.95), Defensin (Global M = 2.14), and Dnase1l3 (Global M = 1.57) increased. The expression of neurotrophic genes such as S100b (Global M = 1.42), and $NF{\kappa}B$ (Global M = 2.04) increased. Conclusions : Analysing the genes expressed on microarray, shows Coptidis chinesis FRANCH.protects cells by increasing viability and neural nutrition.

블루베리가 인체 유방암세포 MCF7에서 세포 사멸 관련 유전자 발현에 미치는 영향 (The Effect of Blueberry Extract on Gene Expressions Related to Apoptosis in Human Breast Cancer MCF7 Cells)

  • 이세나;강금지
    • 동아시아식생활학회지
    • /
    • 제20권1호
    • /
    • pp.30-36
    • /
    • 2010
  • This study was conducted to investigate the effects of blueberry extract on cell death, ROS and gene expression patterns associated with the anti-cancer activity in human breast cancer MCF7 cells. To accomplish this, 20 mg/mL concentration of blueberry extract was added to the cell culture for 0, 6, 12, 24 or 48 h, after which the effects were evaluated by various analyses. MTT assay showed that the cellular activities decreased rapidly during the first 12 h of treatment. During this period, dual staining with Hoechst33322 and propidium iodide also produced a similar trend in which the dead or dying cells increased sharply. Furthermore, evaluation of BrdU incorporation as an index for cell proliferation revealed a marked decrease during the first 12 h of treatment, suggesting that anticancer activity involves the inhibition of cell proliferation and induces cell death. ROS also increased according to the duration of the treatment, indicating intracellular accumulation is associated with the cell death. RT-PCR analysis revealed significant decreases in anti-apoptotic (Bax) and increases in pro-apoptotic gene expressions (Bci-2, caspase- 3, and 9) (p<0.05). Taken these together, blueberry extract induces ROS accumulation in MCF7 cells, causing inhibition of cell proliferation and eventually leading to cell death. This cell death was associated with apoptotic gene expression in blueberry-treated cells for up to 24 h.

Processed Panax ginseng, Sun Ginseng, Decreases Oxidative Damage Induced by tert-butyl Hydroperoxide via Regulation of Antioxidant Enzyme and Anti-apoptotic Molecules in HepG2 Cells

  • Lee, Hye-Jin;Kim, Jin-Hee;Lee, Seo-Young;Park, Jeong-Hill;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • 제36권3호
    • /
    • pp.248-255
    • /
    • 2012
  • Potential antioxidant effect of processed ginseng (sun ginseng, SG) on oxidative stress generated by tert-butyl hydroperoxide (t-BHP) was investigated in HepG2 cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and lactate dehydrogenase (LDH) leakage test demonstrated that SG dose-dependently prevents a loss of cell viability against t-BHP-induced oxidative stress. Also, SG treatment dose-dependently relieved the increment of activities of hepatic enzymes, such as aspartate aminotrasferase and alanine aminotransferase, and lipid peroxidation mediated by t-BHP treatment in HepG2 cells. SG increased the gene expression of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. However, high dose of SG treatment caused decrease in mRNA level of glutathione peroxidase as compared to low dosage of SG-treated cells. The gene expression of glutathione reductase was found to be slightly increased by SG treatment. In addition, SG extract attributed its hepaprotective effect by inducing the mRNA level of bcl-2 and bcl-xL but reducing that of bax. But, the gene expression of bad showed no significant change in SG-treated HepG2 cells. These findings suggest that SG has hepatoprotective effect by showing reduction of LDH release, activities of hepatic enzymes and lipid peroxidation and regulating the gene expression of antioxidant enzymes and apoptosis-related molecules against oxdative stress caused by t-BHP in HepG2 cells.

Anticancer Properties of Psidium guajava - a Mini-Review

  • Correa, Mariana Goncalves;Couto, Jessica Soldani;Teodoro, Anderson Junger
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권9호
    • /
    • pp.4199-4204
    • /
    • 2016
  • Cancer is a complex disease caused by a progressive accumulation of multiple genetic mutations. Consumption of fruits is associated with lower risk of several cancers, which is mainly associated to their phytochemical content. The use of functional foods and chemopreventive compounds seems to contribute in this process, acting by mechanisms of antioxidant, anti-inflammatory, anti-angiogenic and hormonal. The Psidium Guajava has high potential functional related to pigments who are involved in the process of cancer prevention by having antioxidant activity. The aim of the present review is to expose some chemical compounds from P. Guajava fractions and their association with anti-carcinogenic function. The evidences supports the theory of anticancer properties of P. Guajava, although the mechanisms are still not fully elucidated, but may include scavenging free radicals, regulation of gene expression, modulation of cellular signalling pathways including those involved in DNA damage repair, cell proliferation and apoptosis.

Development of radiolabelled histone deacetylase inhibitors for PET imaging study

  • Hee-Kwon Kim
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.165-170
    • /
    • 2020
  • Histone Deacetylases (HDACs) are enzymes that have control gene expression regulation and cell state. In additions, inhibitions of HDACs are associated with growth arrest, differentiation, or apoptosis of tumor cell. Thus HDAC inhibition is one of the interesting biological targets. A variety of HDAC inhibitors has been developed by many scientists, and some of chemical structures related with HDAC inhibitors were modified to give radiolabeled HDAC inhibitors for positron emission tomography (PET) study. In this highlight review, the development of radiolabeled HDAC inhibitors for PET study are described.

K562 세포의 방사선 감수성 변화에 영향을 미치는 신호전달인자 (Signal Transduction Factors on the Modulation of Radiosusceptibility in K562 Cells)

  • 양광모;윤선민;정수진;장지연;조월순;도창호;유여진;신영철;이형식;허원주;임영진;정민호
    • Radiation Oncology Journal
    • /
    • 제21권3호
    • /
    • pp.227-237
    • /
    • 2003
  • 목적: 만성 골수성 백혈병 세포인 K562 세포주는 방사선 및 다양한 항암제에 대한 apoptosis에 저항성을 가진다. 지난 연구에서 K562 세포는 방사선에 대하여 내성반응을 보이며, 세포내 PTK의 작용을 억제하고자 방사선 조사와 함께 투여한 herbimycin A (HMA)에 의하여 방사선에 대한 apoptosis와 같은 감수성반응이 유도되는 반면, genistein에 의하여 방사선에 대한 apoptosis 반응이 저해됨을 확인하였다. 본 연구에서는 타이로신 인산화효소 억제에 의한 K562 세포의 방사선 반응변화를 조절하는 신호전달경로를 조사하였다. 대상 및 방법: K562 세포를 지수증식기의 세포들만 선택하여 실험에 이용하였다. 방사선조사는 6 MeV 선형가속기(Clinac 1800C, Varian)를 이 용하여 $200\~300$ cGy/min 선량률로 $0.5\~12 $ Gy를 균일하게 조사하였다. HMA와 genistein은 각각 $0.25/muM,\;25\muM$을 방사선 조사 후 즉시 투여하였다. 실험에서 신호전달 경로로 abl kinase, MAPK family, NF-kB, c-fos, c-myc, thymidine kinase1 (TK1) 등에서의 단백질 또는 유전자 발현 및 활성을 조사하였다. 또한 약제 투여에 따른 유전자 발현차이(differential gene expression)를 조사하였다. 결과: Abl kinase의 발현 및 활성 변화를 조사하였으나 PTK 저해제에 의한 방사선 유도 세포사의 변화와의 연관성을 찾을 수 없었다. 세포 생존 및 사멸의 신호전달체계에서 주요 조절과정인 MAPK family의 관여 여부 확인에서 방사선으로 인한 SAPK/JNK의 활성화의 유도가 관찰되었으나, PTK 저해제에 따른 변화는 없었으며, 또한 MAPK/ERK와 p38 MAPK 활성은 모든 조건에서 변함 없이 일정하였다. 전사인자 활성화에 대한 조사에서 방사선 조사와 함께 genistein을 투여한 경우에 NF-kB활성이 증가하였다. 유전자 발현 차이의 조사에서 genistein 투여에 의한 TK 1 유전자 발현 및 단백질 활성이 증가하였다. 결론: PTK 억제에 의한 K562 세포의 방사선에 대한 반응 변화는 bcrabl kinase 활성과는 무관하게 진행되며, MAPK family 경로 외의 다른 경로를 통한 전사인자 활성화 과정이 연관되어 있음을 확인하였다.