• Title/Summary/Keyword: Apoptosis and autophagy

Search Result 195, Processing Time 0.019 seconds

Regulatory Role of Autophagy in Globular Adiponectin-Induced Apoptosis in Cancer Cells

  • Nepal, Saroj;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.384-389
    • /
    • 2014
  • Adiponectin, an adipokine predominantly secreted from adipose tissue, exhibits diverse biological responses, including metabolism of glucose and lipid, and apoptosis in cancer cells. Recently, adiponectin has been shown to modulate autophagy as well. While emerging evidence has demonstrated that autophagy plays a role in the modulation of proliferation and apoptosis of cancer cells, the role of autophagy in apoptosis of cancer cell caused by adiponectin has not been explored. In the present study, we demonstrated that globular adiponectin (gAcrp) induces both apoptosis and autophagy in human hepatoma cell line (HepG2 cells) and breast cancer cells (MCF-7), as evidenced by increase in caspase-3 activity, Bax, microtubule-associated protein light chain 3-II (LC3 II) protein levels, and autophagosome formation. Interestingly, gene silencing of LC3B, an autophagy marker, significantly enhanced gAcrp-induced apoptosis in both HepG2 and MCF-7 cell lines, whereas induction of autophagy by rapamycin, an mTOR inhibitor, significantly prevented gAcrp-induced apoptosis in hepatoma cells HepG2. Furthermore, modulation of autophagy produced similar effects on gAcrp-induced Bax expression in HepG2 cells. These results implicate that induction of autophagy plays a regulatory role in adiponectin-induced apoptosis of cancer cells, and thus inhibition of autophagy would be a novel promising target to enhance the efficiency of cancer cell apoptosis by adiponectin.

The Role of Autophagy in Apoptosis Induced by Water Extract of Platycodonis Radix in H460 Human Lung Cancer Cells (H460 인체 폐암세포에서 길경 물 추출물에 의해 유도된 세포사멸에서 자가포식의 역할)

  • Hong, Su Hyun;Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.155-165
    • /
    • 2021
  • Objectives : Recent studies have suggested that Platycodonis Radix has various pharmacological effects such as anti-cancer, antioxidant, anti-asthma, anti-diabetes, anti-obesity, hepatoprotective, and cardiovascular protection effects. The aim of this study was to investigate the role of water extract of Platycodonis Radix (WPR)-induced autophagy in H460 human lung cancer cells. Methods : H460 cells were treated with WPR and cell viability was calculated by an MTT assay. To evaluate changes in apoptosis- and autophagy-related genes, Western blotting was performed. Two kinds of autophagy inhibitors, 3-Methyladenine (3-MA) and bafilomycin A1, were pretreated to confirm the role of WPR-induced autophagy. Results : WPR reduced the viability of H460 cells in a treatment concentration-dependent manner, which was associated with induction of apoptosis. It was also confirmed that WPR induced autophagy based on the formation of specific intracellular vacuoles and changes in the expression of autophagy-related genes. Interestingly, pretreatment with 3-MA and bafilomycin A1 increased WPR-induced cytotoxicity and apoptosis. Conclusions : WPR induced autophagy at low concentrations and early stages of treatment, but promoted apoptosis at high concentrations and late stages. Moreover, WPR-induced autophagy had a cytoprotective role in H460 cells.

The Impact of Autophagy on the Cigarette Smoke Extract-Induced Apoptosis of Bronchial Epithelial Cells

  • Lee, Chang-Hoon;Lee, Kyoung-Hee;Jang, An-Hee;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Background: Previous studies report that apoptosis and autophagy are involved in the pathogenesis of emphysema, and macroautophagy is one of the processes regulating the apoptosis pathway. However, few studies have evaluated whether chaperone-mediated autophagy (CMA) contributes to the regulation of apoptosis. In this study, we investigated the impact of autophagy, including both macroautophagy and CMA, on the apoptosis in bronchial epithelial cells. Methods: Cigarette smoke extract (CSE) was injected intratracheally into C57BL/6 mice, and emphysema and apoptosis were evaluated in the lungs. After treatment with CSE, apoptosis, macroautophagy, and CMA were measured in BEAS2-B cells, and the impact of autophagy on the apoptosis was evaluated following knockdown of autophagy-related genes by short interfering RNAs (siRNAs). Results: Intratracheal CSE injection resulted in the development of emphysema and an increase in apoptosis in mice. CSE increased the apoptosis in BEAS2-B cells, and also elevated the expression of proteins related to both macroautophagy and CMA in BEAS2-B cells. The knockdown experiment with siRNAs showed that macroautophagy increases apoptosis in BEAS2-B cells, while CMA suppresses apoptosis. Conclusion: The intratracheal injection of CSE induces pulmonary emphysema and an increase in apoptosis in mice. CSE also induces apoptosis, macroautophagy, and CMA of bronchial epithelial cells. Macroautophagy and CMA regulate apoptosis in opposite directions.

Apoptosis and autophagy of muscle cell during pork postmortem aging

  • Chunmei Li;Xialian Yin;Panpan Xue;Feng Wang;Ruilong Song;Qi Song;Jiamin Su;Haifeng Zhang
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.284-294
    • /
    • 2024
  • Objective: Pork is an important source of animal protein in many countries. Subtle physiochemical changes occur during pork postmortem aging. The changes of apoptosis and autophagy in pork at 6 h to 72 h after slaughter were studied to provide evidence for pork quality. Methods: In this article, morphological changes of postmortem pork was observed through Hematoxylin-eosin staining, apoptotic nuclei were observed by TdT-mediated dUTP nick end labeling assay, protein related to apoptosis and autophagy expressions were tested by western blot and LC3 level were expressed according to immunofluorescence assay. Results: In this study, we found the occurrence of apoptosis in postmortem pork, and the process was characterized by nucleus condensation and fragmentation, formation of apoptotic bodies, increase in apoptosis-related Bax/Bcl-2 levels, and activation of caspases. Autophagy reached its peak between 24 and 48 h after slaughter, accompanied by the formation of autophagosomes on the cell membrane and expression of autophagy-related proteins beclin-1, P62, LC3-I, LC3-II, and ATG5. Conclusion: Obvious apoptosis was observed at 12 h and autophagy reached its peak at 48 h. The present work provides the evidence for the occurrence of apoptosis and autophagy during postmortem aging of pork. In conclusion, the apoptosis and autophagy of muscle cells discovered in this study have important implications for pork in the meat industry.

Effects of programmed cell death induction method on somatic cell development

  • Kim, Sang-Hwan
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.137-144
    • /
    • 2021
  • In this study, to analyze whether artificial regulation of apoptosis in the development of somatic cells can affect the stable growth and development of cells, 20 alpha-hydroxysteroid dehydrogenase (20α-HSD) and rapamycin were treated to induce apoptosis and autophagy in the both skin and muscle cells. Respectively, and 3-methyladenine was supplemented to inhibit cell death. Our results show that stimulation with rapamycin activated autophagy in both types of cells, but increased apoptosis more than autophagy in the case of skin cells. These results indicate that there was a difference in the expression of survival factors and cell development depending on the type of cell. In particular, in the expression of autophagy-related gene (MAP1LC3A) was higher than that of Casp-3, an apoptosis factor. Furthermore, cell development was the highest in all cell groups cultured by artificially inducing autophagy, however the lowest in the apoptosis-inhibited group. Especially, the noteworthy result of this study was that when apoptosis was induced using 20α-HSD, it was possible to induce apoptosis in both skin and muscle cells. Therefore, the main point of this study is that apoptosis induced during cell culture plays a pivotal role in cell remodeling.

Influence of Autophagy Induction after Hormone Treatment on Oocytes Maturation of Porcine

  • Kim, Sang Hwan;Yoon, Jong Taek
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.271-280
    • /
    • 2018
  • Here, we evaluated the mode of programmed cell death during porcine oocyte maturation by comparing the two major pathways associated with programmed cell death, apoptosis (type I), and autophagy (type II). We investigated the expression and localization of major genes involved in autophagy and apoptosis at mRNA and protein levels. Furthermore, the effect of hormonal stimulation on autophagy and apoptosis was analyzed. We found that the activity of autophagy-associated genes was increased in the cumulus-oocyte complexes (COCs) following follicle-stimulating hormone (FSH) treatment, while the addition of luteinizing hormone (LH) reversed this effect. The expression of proteins associated with autophagy was the highest in FSH-treated COCs. On the other hand, caspase-3 protein level was maximum in COCs cultured with LH. The treatment with rapamycin resulted in the effect similar to that observed with FSH treatment and increased autophagy activity. Thus, hormonal stimulation of pig oocytes resulted in distinct patterns of maturation. The high-quality oocytes majorly relied on the type II pathway (autophagy), while the type I pathway (apoptosis) was more prominent among poor-quality oocytes. Further investigation of this distinction may allow the development of techniques to produce high-quality oocytes in porcine in vitro fertilization.

Autophagy Inhibition Sensitizes Cisplatin Cytotoxicity in Human Gastric Cancer Cell Line Sgc7901

  • Zhang, Hui-Qing;He, Bo;Fang, Nian;Lu, Shan;Liao, Yu-Qian;Wan, Yi-Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4685-4688
    • /
    • 2013
  • We aimed to investigate the mechanism and effects of autophagy on cisplatin (DDP)-induced apoptosis in human gastric cancer cell line SGC7901. After SGC7901 cells were treated with DDP and/or chloroquine, cell proliferation was measured using MTT assay; cell apoptosis was determined by flow cytometry; autophagy and apotosis-related proteins expression were detected by Western blot; and quantitative analysis of autophagy after monodansylcadaverine (MDC) staining was performed using fluorescence microscopy. We found after treatment with 5 mg/L DDP for 24 h, the rates of cell apoptosis were ($21.07{\pm}2.12$)%. Autophagy, characterized by an increase in the number of autophagic vesicles and the level of LC3-II protein was observed in cells treated with DDP. After inhibition of autophagy by chloroquine, the rates of cell apoptosis were increased to ($30.16{\pm}3.54$)%, and the level of Caspase-3 and P53 protein were increased, and Bcl-2 protein was decreased. Therefore, autophagy protects human gastric cancer cell line SGC7901 against DDP-induced apoptosis, inhibition of autophagy can promote apoptosis, and combination therapy with DDP and chloroquine may be a promising therapeutic strategy for gastric cancer.

Autophagy inhibition through PI3K/Akt increases apoptosis by sodium selenite in NB4 cells

  • Ren, Yun;Huang, Fang;Liu, Yuan;Yang, Yang;Jiang, Qian;Xu, Caimin
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.599-604
    • /
    • 2009
  • Selenium possesses the chemotherapeutic feature by inducing apoptosis in cancer cell with trivial side effects on normal cells. However, the mechanism in which is not clearly understood. Emerging evidence indicates the overlaps between the autophagy and the apoptosis. In this study, we have investigated the role of autophagy in selenium-induced apoptosis in NB4 cells. We find that autophagy is suppressed in NB4 cells treated by sodium selenite, as measured by electron microscope, acridine orange staining and western blot. Moreover, selenite combined with autophagy inhibitor contributes to the up-regulation of apoptosis, while the PI3K/Akt signaling pathway is down- regulated. Consistently, when the inhibitor of PI3K was applied, the autophagic level significantly decreased. In summary, sodium selenite increases NB4 cell apoptosis by autophagy inhibition through PI3K/Akt, and the inhibition of autophagy contributes to the up-regulation of apoptosis.

Induction of cytoprotective autophagy by morusin via AMP-activated protein kinase activation in human non-small cell lung cancer cells

  • Park, Hyun-Ji;Park, Shin-Hyung
    • Nutrition Research and Practice
    • /
    • v.14 no.5
    • /
    • pp.478-489
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Morusin, a marker component of Morus alba L., possesses anti-cancer activity. The objective of this study was to determine autophagy-inducing effect of morusin in non-small cell lung cancer (NSCLC) cells and investigate the underlying mechanism. SUBJECTS/METHODS: Autophagy induction and the expression of autophagy-related proteins were analyzed by LC3 immunofluorescence and western blot, respectively. The role of autophagy and AMP-activated protein kinase (AMPK) was determined by treating NSCLC cells with bafilomycin A1, an autophagy inhibitor, and compound C, an AMPK inhibitor. Cytotoxicity and apoptosis induction were determined by MTT assay, trypan blue exclusion assay, annexin V-propidium iodide (PI) double staining assay, and cell cycle analysis. RESULTS: Morusin increased the formation of LC3 puncta in the cytoplasm and upregulated the expression of autophagy-related 5 (Atg5), Atg12, beclin-1, and LC3II in NSCLC cells, demonstrating that morusin could induce autophagy. Treatment with bafilomycin A1 markedly reduced cell viability but increased proportions of sub-G1 phase cells and annexin V-positive cells in H460 cells. These results indicate that morusin can trigger autophagy in NSCLC cells as a defense mechanism against morusin-induced apoptosis. Furthermore, we found that AMPK and its downstream acetyl-CoA carboxylase (ACC) were phosphorylated, while mammalian target of rapamycin (mTOR) and its downstream p70S6 kinase (p70S6K) were dephosphorylated by morusin. Morusin-induced apoptosis was significantly increased by treatment with compound C in H460 cells. These results suggest that morusin-induced AMPK activation could protect NSCLC cells from apoptosis probably by inducing autophagy. CONCLUSIONS: Our findings suggest that combination treatment with morusin and autophagy inhibitor or AMPK inhibitor might enhance the clinical efficacy of morusin for NSCLC.

Effects of Platycodon grandiflorum on the Induction of Autophagy and Apoptosis in HCT-116 Human Colon Cancer Cells (길경 추출물에 의한 HCT-116 대장암 세포주에서의 autophagy와 apoptosis 유발 효과)

  • Hong, Su Hyun;Park, Cheol;Han, Min Ho;Kim, Hong Jae;Lee, Moon Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1244-1251
    • /
    • 2014
  • Platycodon grandiflorum (PG) has been known to possess many biological effects, including anti-inflammatory and anti-allergy activity and anti-obesity and hyperlipidemia effects. However, little research has been conducted regarding its anticancer effects, with the exception of its ability to stimulate apoptosis in skin cells. There has also been no study regarding PG-induced autophagy. The modulation of autophagy is recognized as one of the hallmarks of cancer cells. Depending on the type of cancer and the context, autophagy can suppress or help cancer cells to overcome metabolic stress and the cytotoxicity of chemotherapy. Therefore, the present study was designed to investigate whether or not extracts from PG-induced cell death were connected with autophagy and apoptosis in HCT-116 human colon cancer cells. PG stimulation decreased cell proliferation in a dose- and time-dependent manner and induced apoptosis, which was partially dependent on the activation of caspases. PG treatment also resulted in the formation of autophagic vacuoles simultaneously with regulation of autophagy-related genes. Interestingly, a PG-mediated apoptotic effect was further triggered by pretreatment with the autophagy inhibitors 3-methyladenin and bafilomycin A1. However, cell viability recovered quite well with bafilomycin A1 treatment. These findings show that PG treatment promotes both autophagy and apoptosis and that PG-induced autophagic response might play a role in the autophagic cell death of HCT-116 cells.