• 제목/요약/키워드: Apoptosis and G2M Cell Cycle Arrest

검색결과 201건 처리시간 0.04초

Propolis from the Stingless Bee Trigona incisa from East Kalimantan, Indonesia, Induces In Vitro Cytotoxicity and Apoptosis in Cancer Cell lines

  • Kustiawan, Paula M;Phuwapraisirisan, Preecha;Puthong, Songchan;Palaga, Tanapat;Arung, Enos T;Chanchao, Chanpen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6581-6589
    • /
    • 2015
  • Background: Previously, stingless bee (Trigona spp.) products from East Kalimantan, Indonesia, were successfully screened for in vitro antiproliferative activity against human cancer derived cell lines. It was established that propolis from T. incisa presented the highest in vitro cytotoxicity against the SW620 colon cancer cell line (6% cell survival in $20{\mu}g/mL$). Materials and Methods: Propolis from T. incisa was extracted with methanol and further partitioned with n-hexane, ethyl acetate and methanol. The in vitro cytotoxicity of the extracts was assessed by the MTT assay against human colon (SW620), liver (Hep-G2), gastric (KATO-III), lung (Chago) and breast (BT474) cancer derived cell lines. The active fractions were further enriched by silica gel quick column, absorption and size exclusion chromatography. The purity of each fraction was checked by thin layer chromatography. Cytotoxicity in BT-474 cells induced by cardanol compared to doxorubicin were evaluated by MTT assay, induction of cell cycle arrest and cell death by flow cytometric analysis of propidium iodide and annexin-V stained cells. Results: A cardol isomer was found to be the major compound in one active fraction (F45) of T. incisa propolis, with a cytotoxicity against the SW620 ($IC_{50}$ of $4.51{\pm}0.76{\mu}g/mL$), KATO-III (IC50 of $6.06{\pm}0.39{\mu}g/mL$), Hep-G2 ($IC_{50}$ of $0.71{\pm}0.22{\mu}g/mL$), Chago I ($IC_{50}$ of $0.81{\pm}0.18{\mu}g/mL$) and BT474 (IC50 of $4.28{\pm}0.14{\mu}g/mL$) cell lines. Early apoptosis (programmed cell death) of SW620 cells was induced by the cardol containing F45 fraction at the $IC_{50}$ and $IC_{80}$ concentrations, respectively, within 2-6 h of incubation. In addition, the F45 fraction induced cell cycle arrest at the G1 subphase. Conclusions: Indonesian stingless bee (T. incisa) propolis had moderately potent in vitro anticancer activity on human cancer derived cell lines. Cardol or 5-pentadecyl resorcinol was identified as a major active compound and induced apoptosis in SW620 cells in an early period (${\leq}6h$) and cell cycle arrest at the G1 subphase. Thus, cardol is a potential candidate for cancer chemotherapy.

Anti-cancer Effect of Apigenin on Human Breast Carcinoma MDA-MB-231 through Cell Cycle Arrest and Apoptosis

  • Lee, Hwan Hee;Cho, Hyosun
    • 한국미생물·생명공학회지
    • /
    • 제47권1호
    • /
    • pp.34-42
    • /
    • 2019
  • Apigenin, a common natural product that is found in many plants and vegetables, has been reported to have many biological activities, including antioxidative, anti-inflammatory, and anticancer effects. The triple-negative breast carcinoma cell line MDA-MB-231 is known to be highly invasive and resistant to chemotherapy. In this study, we investigated the anticancer effect of apigenin on human MDA-MB-231 cells. First, the cytotoxicity of apigenin toward MDA-MB-231 cells was analyzed by MTT assay. Then, the cell cycle and apoptotic effects of apigenin were examined, and the molecular mechanism underlying its anticancer activity was explored. Apigenin inhibited the growth of the cells in a dose-dependent manner, correlating with the cell cycle arrest at the G2-M phase as well as an increase of early apoptosis. The cell-cycle inhibitory effect was highly associated with the increased expression of p21 and decreased expression of CDK6, cyclin D1, and cyclin B1. The induction of apoptosis by apigenin was associated with the upregulated expression of cleaved PARP and cleaved caspase-3, -7, and -9.

Antiproliferative Effect of Trichostatin A and HC-Toxin in T47D Human Breast Cancer Cells

  • Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • 제27권6호
    • /
    • pp.640-645
    • /
    • 2004
  • Histone deacetylase inhibitors are new class of chemotherapeutic drugs able to induce tumor cell apoptosis and/or cell cycle arrest. Trichostatin A, an antifungal antibiotic, and HC-toxin are potent and specific inhibitors of histone deacetylase activity. In this study, we have examined the antiproliferative activities of trichostatin A and HC-toxin in estrogen receptor positive human breast cancer, T47D cells. Both trichostatin A and HC-toxin showed potent antiprolifer-ative efficacy and cell cycle arrest at $G_2/M$ in T47D human breast cancer cells in a dose-dependent manner. Trichostatin A caused potent apoptosis of T47D human breast cancer cells and trichostatin A-induced apoptosis might be involved in an increase of caspase-3/7 activity. HC-toxin evoked apoptosis of T47D cells and HC-toxin induced apoptosis might not be medi-ated through direct increase in caspase-3/7 activity. We have identified potent activities of anti-proliferation, apoptosis, and cell cycle arrest of trichostatin A and HC-toxin in estrogen receptor positive human breast cancer cell line T47D.

Bleomycin Inhibits Proliferation via Schlafen-Mediated Cell Cycle Arrest in Mouse Alveolar Epithelial Cells

  • Jang, Soojin;Ryu, Se Min;Lee, Jooyeon;Lee, Hanbyeol;Hong, Seok-Ho;Ha, Kwon-Soo;Park, Won Sun;Han, Eun-Taek;Yang, Se-Ran
    • Tuberculosis and Respiratory Diseases
    • /
    • 제82권2호
    • /
    • pp.133-142
    • /
    • 2019
  • Background: Idiopathic pulmonary fibrosis involves irreversible alveolar destruction. Although alveolar epithelial type II cells are key functional participants within the lung parenchyma, how epithelial cells are affected upon bleomycin (BLM) exposure remains unknown. In this study, we determined whether BLM could induce cell cycle arrest via regulation of Schlafen (SLFN) family genes, a group of cell cycle regulators known to mediate growth-inhibitory responses and apoptosis in alveolar epithelial type II cells. Methods: Mouse AE II cell line MLE-12 were exposed to $1-10{\mu}g/mL$ BLM and $0.01-100{\mu}M$ baicalein (Bai), a G1/G2 cell cycle inhibitor, for 24 hours. Cell viability and levels of pro-inflammatory cytokines were analyzed by MTT and enzyme-linked immunosorbent assay, respectively. Apoptosis-related gene expression was evaluated by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Cellular morphology was determined after DAPI and Hoechst 33258 staining. To verify cell cycle arrest, propidium iodide (PI) staining was performed for MLE-12 after exposure to BLM. Results: BLM decreased the proliferation of MLE-12 cells. However, it significantly increased expression levels of interleukin 6, tumor necrosis factor ${\alpha}$, and transforming growth factor ${\beta}1$. Based on Hoechst 33258 staining, BLM induced condensation of nuclear and fragmentation. Based on DAPI and PI staining, BLM significantly increased the size of nuclei and induced G2/M phase cell cycle arrest. Results of qRT-PCR analysis revealed that BLM increased mRNA levels of BAX but decreased those of Bcl2. In addition, BLM/Bai increased mRNA levels of p53, p21, SLFN1, 2, 4 of Schlafen family. Conclusion: BLM exposure affects pulmonary epithelial type II cells, resulting in decreased proliferation possibly through apoptotic and cell cycle arrest associated signaling.

The influence of p53 mutation status on the anti-cancer effect of cisplatin in oral squamous cell carcinoma cell lines

  • Jo, Deuk-Won;Kim, Young-Kyun;Yun, Pil-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제42권6호
    • /
    • pp.337-344
    • /
    • 2016
  • Objectives: The purpose of this study was to evaluate the anti-cancer activity of cisplatin by studying its effects on cell viability and identifying the mechanisms underlying the induction of cell cycle arrest and apoptosis on oral squamous cell carcinoma (OSCC) cell lines with varying p53 mutation status. Materials and Methods: Three OSCC cell lines, YD-8 (p53 point mutation), YD-9 (p53 wild type), and YD-38 (p53 deletion) were used. To determine the cytotoxic effect of cisplatin, MTS assay was performed. The cell cycle alteration and apoptosis were analyzed using flow cytometry. Western blot analysis was used to detect the expression of cell cycle alteration- or apoptosis-related proteins as well as p53. Results: Cisplatin showed a time- and dose-dependent anti-proliferative effect in all cell lines. Cisplatin induced G2/M cell accumulation in the three cell lines after treatment with 0.5 and $1.0{\mu}g/mL$ of cisplatin for 48 hours. The proportion of annexin V-FITC-stained cells increased following treatment with cisplatin. The apoptotic proportion was lower in the YD-38 cell line than in the YD-9 or YD-8 cell lines. Also, immunoblotting analysis indicated that p53 and p21 were detected only in YD-8 and YD-9 cell lines after cisplatin treatment. Conclusion: In this study, cisplatin showed anti-cancer effects via G2/M phase arrest and apoptosis, with some difference among OSCC cell lines. The mutation status of p53 might have influenced the difference observed among cell lines. Further studies on p53 mutation status are needed to understand the biological behavior and characteristics of OSCCs and to establish appropriate treatment.

Inhibition of Cellular Proliferation by p53 dependent Apoptosis and G2M Cell Cycle Arrest of Saussurea lappa CLARKE in AGS Gastric Cancer Cell Lines

  • Jeong Han Su;Kim Dong Jo;Heo Geum Jeong;Nam Chang Gyu;Go Seong Gyu
    • 동의생리병리학회지
    • /
    • 제18권4호
    • /
    • pp.1186-1191
    • /
    • 2004
  • The root of Saussurea lappa includes sesquiterpene lactones such as costunolide and dehydrocostus lactone, and has been shown to be anti-tumorigenic with being used in traditional medicinal therapy in the Eastern Asia. However, the molecular basis of the effects of Saussurea lappa on fate of gastric carcinoma, which incur very frequently in the area, has not been well identified. In this study, the cytostatic effects of Saussurea lappa were examined using gastric AGS cancer cells. Cell viability was dramatically reduced by Saussurea lappa, in a dose-dependent manner. As time passed after its treatment, apoptotic population was increased and clearly showed G2-arrest. Being consistent, its treatment resulted in maintaining of G1 and S-phase cyclins D1, E, and A even until a significant apoptotic population was observed, for example, at 24h after treatment. However, G2/M phase cyclin B1 was reduced even at 12 h after treatment. In addition, its treatment increased expression of p53, p21/sup Wafl / cyclin dependent kinase inhibitor (CKI), and Bax, resulted in cleavages of procaspase 3 and poly ADP-ribose polymerase(PARP), indicating that such G2 arrest- and apoptosis-related molecules are involved. Therefore, these suggest that extracts of Saussurea lappa root may be a safer and effective reagent to deal with gastric cancers either by traditional herbal therapy or combinational therapy with conventional chemotherapy.

Cordycepin에 의한 LNCap 인체 전립선 암세포의 apoptosis 및 G2/M arrest 유발 (Induction of Apoptosis and G2/M Cell Cycle Arrest by Cordycepin in Human Prostate Carcinoma LNCap Cells)

  • 이혜현;황원덕;정진우;박철;한민호;홍수현;정영기;최영현
    • 생명과학회지
    • /
    • 제24권1호
    • /
    • pp.92-97
    • /
    • 2014
  • Cordycepin은 Cordyceps militaris에서 처음 유래된 nucleoside adenosine 유도체의 일종으로 면역증강 및 항암활성을 포함한 다양한 약리 기능이 있는 것으로 알려져 있다. 본 연구에서는 LNCap 인체 전립선 암세포 모델을 이용하여 cordycepin에 의한 항암활성 기전을 연구하였다. Cordycepin 처리에 따라 LNCap 세포는 처리 농도 의존적으로 증식이 억제되었으며, 이는 apoptosis 유발과 연관성이 있음을 poly ADP-ribose polymerase의 단편화 현상과 Annexin V 염색에 의한 정량적 분석으로 확인하였다. Cordycepin 처리에 따른 flow cytometric analysis 결과로서 cordycepin이 세포주기 G2/M기 정체 현상을 유발하였음을 알 수 있었으며, 이는 cyclin B1 및 cyclin A의 발현 감소와 연관성이 있었다. 또한 cordycepin이 처리된 LNCap 세포에서 cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1의 발현이 증가되었지만, CDK2, CDC2 및 Cdc25C의 발현에는 큰 영향을 미치지 않았으며, cordycepin에 의하여 증가된 p21 단백질은 CDK2 및 CDC2와의 복합체를 형성하고 있었다. 본 연구의 결과는 LNCap 전립선 암세포에서 cordycepin에 의한 G2/M 및 apoptosis 유발은 p53 비존적인 CDK inhibitor p21의 발현 증가가 중요한 역할을 하고 있음을 보여주는 것이다.

황금 에탄올 추출물에 의한 인간 신장암 세포주 Caki-1의 G2/M arrest 유발 (Induction of Cell Cycle Arrest at G2/M phase by Ethanol Extract of Scutellaria baicalensis in Human Renal Cell Carcinoma Caki-1 Cells)

  • 박동일;정진우;박철;홍수현;신순식;최성현;최영현
    • 대한한의학방제학회지
    • /
    • 제23권2호
    • /
    • pp.199-208
    • /
    • 2015
  • Objectives : In the present study, we investigated the effects of ethanol extract of Scutellaria baicalensis (EESB) on the progression of cell cycle in human renal cell carcinoma Caki-1 cells. Methods : The effects of EESB on cell growth and apoptosis induction were evaluated by trypan blue dye exclusion assay and flow cytometry, respectively. The mRNA and protein levels were determined by Western blot analysis and reverse transcription-polymerase chain reaction, respectively. Results : It was found that EESB treatment on Caki-1 cells resulted in a dose-dependent inhibition of cell growth and induced apoptotic cell death as detected by Annexin V-FITC staining. The flow cytometric analysis indicated that EESB resulted in G2/M arrest in cell cycle progression which was associated with the down-regulation of cyclin A expression. Our results also revealed that treatment with EESB increased the mRNA and proteins expression of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1), without any noticeable changes in cyclin B1, Cdk2 and Cdc2. In addition, the incubation of cells with EESB resulted in a significant increase in the binding of p21 and Cdk2 and Cdc2. These findings suggest that EESB-induced G2/M arrest and apoptosis in Caki-1 cells is mediated through the p53-mediated upregulation of Cdk inhibitor p21. Conclusions : Taken together, these findings suggest that EESB may be a potential chemotherapeutic agent and further studies will be needed to identify the biological active compounds that confer the anti-cancer activity of S. baicalensis.

Bracken-fern Extracts Induce Cell Cycle Arrest and Apoptosis in Certain Cancer Cell Lines

  • Roudsari, Motahhareh Tourchi;Bahrami, Ahmad Reza;Dehghani, Hesam;Iranshahi, Mehrdad;Matin, Maryam Moghadam;Mahmoudi, Mahmud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6047-6053
    • /
    • 2012
  • Bracken fern [Pteridium aquilinem (L.) kuhn (Dennstaedtiaceae)] is one of the most common species on the planet. It has been consumed by humans and animals for centuries. Use by some human groups is because they believe bracken fern is good for health as plant medicine. However, it is also one of the few known plants that can cause tumors in farm animals. Many interested groups have focused their attention on bracken fern because of these interesting features. In order to evaluate the biological effects of exposure to this plant in cellular level, human cancer cell lines were treated with the fern dichloromethane extracts and the genotoxic and cytotoxic effects were studied. Anti-proliferative/cytotoxic effects were evaluated by cell count, MTT assay and flow cytometry methods with three different cancer cell lines, TCC, NTERA2, and MCF-7, and two normal cells, HDF1 and HFF3. Pro-apoptotic effects of the extracts were determined by DAPI staining and comet assay, on TCC cancer cells compared to the normal control cell lines. Cellular morphology was examined by light microscopy. Our present study showed that the extract caused DNA damage and apoptosis at high concentrations ($200{\mu}g/mL$) and also it may induce cell cycle arrest (G2/M phase) at mild concentrations (50 and $30{\mu}g/mL$) depending on the cell type and tumor origin. These results indicate that bracken fern extract is a potent source of anticancer compounds that could be utilized pharmaceutically.

HY253, a Novel Decahydrofluorene Analog, Induces Apoptosis via Intrinsic Pathway and Cell Cycle Arrest in Liver Cancer HepG2 Cells

  • Choi, Ko-woon;Suh, Hyewon;Jang, Seunghun;Kim, Dongsik;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권3호
    • /
    • pp.413-417
    • /
    • 2015
  • Recently, we isolated HY253, a novel decahydrofluorene analog with a molecular structure of 7,8a-divinyl-2,4a,4b,5,6,7,8,8a,9,9a-decahydro-1H-fluorene-2,4a,4b,9a-tetraol from the roots of Aralia continentalis, which is known as Dokwhal (獨活), a traditional medicinal herb. Moreover, we previously reported its cytotoxic activity on cancer cell proliferation in human lung cancer A549 and cervical cancer HeLa cells. The current study aimed to evaluate its detailed molecular mechanisms in cell cycle arrest and apoptotic induction in human hepatocellular carcinoma HepG2 cells. Flow cytometric analysis of HepG2 cells treated with $60{\mu}M$ HY253 revealed appreciable cell cycle arrest at the G1 phase via inhibition of Rb phosphorylation and down-regulation of cyclin D1. Furthermore, using western blots, we found that up-regulation of cyclin-dependent kinase inhibitors, such as p21CIP1 and p27KIP1, was associated with this G1 phase arrest. Moreover, TUNEL assay and immunoblottings revealed apoptotic induction in HepG2 cells treated with $60{\mu}M$ HY253 for 24 h, which is associated with cytochrome c release from mitochondria, via down-regulation of anti-apoptotic Bcl-2 protein, which in turn resulted in activation of caspase-9 and -3, and proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). Accordingly, we suggest that HY253 may be a potent chemotherapeutic hit compound for treating human liver cancer cells via up-regulation and activation of the p53 gene.