• Title/Summary/Keyword: Apoptosis Caspase-3

Search Result 1,493, Processing Time 0.034 seconds

The mechanism of apoptosis induced by eugenol in human osteosarcoma cells

  • Shin, Sang-Hun;Park, Jae-Hyun;Kim, Gyoo-Cheon;Park, Bong-Soo;Gil, Young-Gi;Kim, Chul-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.1
    • /
    • pp.20-27
    • /
    • 2007
  • Eugenol is commonly used in dentistry for the sedation of toothache, pulpitis, and dental hyperalgesia. This study was performed to investigate the apoptotic effect of eugenol to human osteosarcoma (HOS) cells and the potential use of this compound in osteosarcoma cells. Eugenol showed the apoptotic effect in HOS cells in dose- and time-dependent manner. Fragmentation and condensation of DNA were showed by TUNEL assay, Hemacolor stain and Hoechst stain. In the DNA electrophoresis analysis, cells showed DNA degradation characteristic of apoptosis with a ladder pattern of DNA fragments. Apoptosis-related factors were analyzed by western blotting. Cells treated with eugenol showed caspase-3, PARP, lamin A and DFF-45 cleavage. Eugenol treatment induced caspase-3 cleavage and activation. Cleavages of PARP, DFF-45 and lamin A were accompanied with activation of caspase triggered by eugenol in HOS cells. Though this study needs more investigations, these results suggest that eugenol induce apoptosis via caspase dependent pathway in HOS cells and eugenol may constitute a potential antitumor compound against osteosarcoma cells.

Anti-Fibrotic Effects of DL-Glyceraldehyde in Hepatic Stellate Cells via Activation of ERK-JNK-Caspase-3 Signaling Axis

  • Md. Samsuzzaman;Sun Yeou Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.425-433
    • /
    • 2023
  • During liver injury, hepatic stellate cells can differentiate into myofibroblast-like structures, which are more susceptible to proliferation, migration, and extracellular matrix generation, leading to liver fibrosis. Anaerobic glycolysis is associated with activated stellate cells and glyceraldehyde (GA) is an inhibitor of glucose metabolism. Therefore, this study aimed to investigate the anti-fibrotic effects of GA in human stellate LX-2 cells. In this study, we used cell viability, morphological analysis, fluorescence-activated cell sorting (FACS), western blotting, and qRT-PCR techniques to elucidate the molecular mechanism underlying the anti-fibrotic effects of GA in LX-2 cells. The results showed that GA significantly reduced cell density and inhibited cell proliferation and lactate levels in LX-2 cells but not in Hep-G2 cells. We found that GA prominently increased the activation of caspase-3/9 for apoptosis induction, and a pan-caspase inhibitor, Z-VAD-fmk, attenuated the cell death and apoptosis effects of GA, suggesting caspase-dependent cell death. Moreover, GA strongly elevated reactive oxygen species (ROS) production and notably increased the phosphorylation of ERK and JNK. Interestingly, it dramatically reduced α-SMA and collagen type I protein and mRNA expression levels in LX-2 cells. Thus, inhibition of ERK and JNK activation significantly rescued GA-induced cell growth suppression and apoptosis in LX-2 cells. Collectively, the current study provides important information demonstrating the anti-fibrotic effects of GA, a glycolytic metabolite, and demonstrates the therapeutic potency of metabolic factors in liver fibrosis.

Induction of Apaopotis by Water Extract of Cordyceps militaris (WECM) in Human Hepatocellular Carcinoma HepG2 Cells. (동충하초 열수 추출물에 의한 인체 간암세포 성장억제 및 apoptosis 유발에 관한 연구)

  • Kim, Kyung-Mi;Park, Cheol;Choi, Yung-Hyun;Lee, Won-Ho
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.804-813
    • /
    • 2008
  • Cordyceps militaris, the Chinese medicinal fungal genus Cordyceps, is reported to possess many pharmacological activities including immunological stimulating, anti-cancer, anti-virus and anti-infection activities. However, the molecular mechanisms of C. militaris on biochemical actions in cancer have not been clearly elucidated yet. In the present study, we investigated the anti-proliferative activity of the water extract of C. militaris (WECM) in human hepatocellular carcinoma HepG2 cells. It was found that WECM could inhibit the cell growth in a dose-dependent manner, which was associated with morphological changes and apoptotic cell death such as formation of apoptotic bodies and increased populations of apoptotic sub-G1 phase. Apoptotic cell death of HepG2 cells by WECM was connected with a up-regulation of pro-apoptotic Bax expression, tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 (WAF1/CIP1). In addition, WECM treatment induced the proteolytic activation of caspase-3 and a concomitant degradation and/or inhibition of poly (ADP-ribose) polymerase (PARP), ${\beta}-catenin$ and phospholipase $(PLC)-{\gamma}1$ protein. Furthermore, caspase-3 inhibitor, z-DEVD-fmk, significantly inhibited WECM-induced apoptosis demonstrating the important role of caspase-3 in the observed cytotoxic effect. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of C. militaris.

Dohaekseungkitang extract induced apoptosis in Human Cervical carcinoma HeLa cells (도핵승기탕(桃核承氣湯) 자궁경부암세포(子宮經部癌細胞)(HeLa cell)의 apoptosis에 미치는 영향(影響))

  • Kang, Yong-Goo;Ahn, Kyu-Hwan;Kong, Bok-Cheul;Kim, Song-Baeg;Cho, Han-Baek
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.2
    • /
    • pp.77-91
    • /
    • 2006
  • Purpose : To address the ability of Dohaekseungkitang (DST: a commonly used herb formulation in Korea, Japan and China to have anti-cancer effect on cervical carcinoma), we investigated the effects of DST on programmed cell death (apoptosis) in HeLa human cervical carcinoma cells. Methods : We cultured HeLa cell which is human metrocarcinoma cell in D-MEM included 10% fetal bovine serum(Hyclone Laboratories) below $37^{\circ}C$, 5% CO2. Then we observed apoptosis of log phage cell which is changed cultivation liquid 24 Hours periodically. Results : After the treatment of DST for 48 hours, apoptosis occurred in a dose-dependent manner. In this study, we have shown that DST induces calpain and the associated caspase-8 and -9 activations. Apoptosis was prevented by pre-incubation of the cells with the calcium cHeLator-BAPTA-AM, calcium channel blocker-Nif edipine or Ryonidine agonist-Ryonidine peptide, implicating calcium in the apoptotic process. Ubiquitous calpains (mu- and m-calpain) have been repeatedly implicated in apoptosis, especially in calcium-related apoptosis. However this study showed 1hat either calpain inhibitor-calpastin or caspase-3 inhibitor-DEVD- did not blocked the herb formulation-induced apoptosis in HeLa human cervical carcinoma cells. D ST initiates a cell death pathway that is partially dependent of caspases. DST-induced apoptosis requires caspase-independent mechanism. Conclusion : We conclude that DST-induced calpain activation triggers the intrinsic apoptotic pathway in which caspase-independent mechanism is also involved.

  • PDF

Study on the Pro-apoptotic Effect of Artemisiae Capillaris Herba Extracted with Ethanol on Biliary Tract Cancer Cell Line, SNU-1196 (인진(茵蔯)의 에탄올 추출물이 담도암 세포주 SNU-1196의 apoptosis에 미치는 효과에 관한 연구)

  • Lee, Kyung-Wook;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.587-598
    • /
    • 2012
  • Objectives : This study was performed to elucidate the pro-apoptotic effect of Artemisiae capillaris herba extracted with ethanol on biliary tract cancer cells. Materials and Methods : The biliary tract cancer cell line SNU-1196 was used in this study. Cells were treated with different concentrations of Artemisiae capillaris herba for 24, 48 and 72 hours. After the treatment, cell viability, apoptosis, caspase activities and the mRNA expressions of the Bcl-2, Bax, P53, and P21 were measured by using MTT assay, cell cycle analysis, apoptosis assay, and RT-PCR. The cell cycle analysis was done by flow cytometry and apoptosis assay by cell death detection ELISA kit. Results : Artemisiae capillaris herba inhibited proliferation of SNU-1196 in long-time culture group with dose-dependent manner. All cells treated with Artemisiae capillaris herba showed increased apoptosis with dose- and time-dependent manner. Exposure of SNU-1196 to Artemisiae capillaris herba induced caspase-3 activation. However, apeoptosis was blocked when SNU-1196 was treated together with the pan-caspase inhibitor Z-VAD-FMK and the caspase-3 inhibitor Z-DEVE-FMK. After the treatment of Artemisiae capillaris herba, the mRNA expressions of caspase -3, -8, -9, p53, and p21 was increased in all cells. Artemisiae capillaris herba resulted in a significant decrease in Bcl-2 and an increase in Bax mRNA levels. Conclusions : These results suggest that Artemisiae capillaris herba would be beneficial in the treatment of biliary tract cancer.

Inductions of Caspase-, MAPK- and ROS-dependent Apoptosis and Chemotherapeutic Effects Caused by an Ethanol Extract of Scutellaria barbata D. Don in Human Gastric Adenocarcinoma Cells

  • Shim, Ji Hwan;Gim, Huijin;Lee, Soojin;Kim, Byung Joo
    • Journal of Pharmacopuncture
    • /
    • v.19 no.2
    • /
    • pp.129-136
    • /
    • 2016
  • Objectives: The crude extracts of Scutellaria barbata D. Don (SB) have traditionally demonstrated inhibitory effects on numerous human cancers both in vitro and in vivo. Gastric cancer is one of the most common types of cancer on world. The authors investigated the effects of an ethanol extract of Scutellaria barbata D. Don (ESB) on the growth and survival of MKN-45 cells (a human gastric adenocarcinoma cell line). Methods: The MKN-45 cells were treated with different concentrations of ESB, and cell death was examined using an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Analyses of sub-G1 peaks, caspase-3 and -9 activities, and mitochondrial membrane depolarizations were conducted to determine the anti-cancer effects of SB on MKN-45 cells. Also, intracellular reactive oxygen species (ROS) generation was investigated. Results: ESB inhibited the growth of MKN-45 cells, caused cell cycle arrest, and increased the sub-G1 population. In addition, ESB markedly increased mitochondrial membrane depolarization and the activities of caspase-3 and -9. ESB exerted anti-proliferative effects on MKN-45 cells by modulating the mitogen-activated protein kinase (MAPK) signaling pathway and by increasing the generation of ROS. Furthermore, combinations of anti-cancer drugs plus ESB suppressed cell growth more than treatments with an agent or ESB, and this was especially true for cisplatin, etoposide, and doxorubicin. Conclusion: ESB has a dose-dependent cytotoxic effect on MKN-45 cells and this is closely associated with the induction of apoptosis. ESB-induced apoptosis is mediated by mitochondria-, caspase- and MAPK dependent pathways. In addition, ESB enhances ROS generation and increases the chemosensitivity of MKN-45 cells. These results suggest that treatment with ESB can inhibit the proliferation and promote the apoptosis of human gastric adenocarcinoma cells by modulating the caspase-, MAPK- and ROS-dependent pathway.

Increased Apoptotic Efficacy of Decitabine in Combination with an NF-kappaB Inhibitor in Human Gastric Cancer AGS Cells (핵산합성 억제제인 decitabine과 NF-κB 활성 저해제인 PDTC의 병용 처리에 의한 인체 위암세포사멸 효과 증진)

  • Choe, Won Kyung;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1268-1276
    • /
    • 2018
  • The cytidine analog decitabine (DEC) acts as a nucleic acid synthesis inhibitor, whereas ammonium pyrrolidine dithiocarbamate (PDTC) is an inhibitor of nuclear factor-${\kappa}B$. The aim of this study was to investigate the possible synergistic inhibitory effect of these two inhibitors on proliferation of human gastric cancer AGS cells. The inhibitory effect of PDTC on AGS cell proliferation was significantly increased by DEC in a concentration-dependent manner, and this inhibition was associated with cell cycle arrest at the G2/M phase and the induction of apoptosis. This induction of apoptosis by the co-treatment with PDTC and DEC was related to the induction of DNA damage, as assessed by H2AX phosphorylation. Further studies demonstrated that co-treatment with PDTC and DEC induced the disruption of mitochondrial membrane potential, increased the generation of intracellular reactive oxygen species (ROS) and the expression of pro-apoptotic Bax, and down-regulated the expression of anti-apoptotic Bcl-2, ultimately resulting in the release of cytochrome c from the mitochondria into the cytoplasm. Co-treatment with PDTC and DEC also activated caspase-8 and caspase-9, which are representative caspases of the extrinsic and intrinsic apoptosis pathways. Co-treatment also activated caspase-3, which was accompanied by proteolytic degradation of poly (ADP-ribose) polymerase. Taken together, these data clearly indicated that co-treatment with PDTC and DEC suppressed the proliferation of AGS cells by increasing DNA damage and activating the ROS-mediated extrinsic and intrinsic apoptosis pathways.

Sagantang-induced Apoptotic Cell Death is Associated with the Activation of Caspases in AGS Human Gastric Carcinoma Cells (사간탕 처리에 의한 AGS 인체 위암세포의 caspase 활성 의존적 apoptosis 유발)

  • Park, Cheol;Hong, Su Hyun;Choi, Sung Hyun;Lee, Se-Ra;Leem, Sun-Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1384-1392
    • /
    • 2015
  • Sagantang (SGT), a Korean multiherb formula comprising six medicinal herbs, Paeonia lactiflora Pall., Belamcanda chinensis (L.) DC, Gardenia jasminoides Ellis, Poria cocos Wolf, Cimicifuga heracleifolia Komarov, and Artractylodes japonica Koidzumi, was recorded in “Dongeuibogam.” The present study investigated the anticancer potential of SGT in AGS human gastric carcinoma cells. The results indicated that SGT treatment significantly inhibited the growth and viability of AGS cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, in addition to chromatin condensation and DNA fragmentation, and the accumulation of annexin-V positive cells. The induction of apoptotic cell death by the SGT treatment was associated with up-regulation of Fas protein expression, truncation of Bid, and down-regulation of the anti-apoptotic Bcl-2 protein. The SGT treatment also effectively induced the loss of mitochondrial membrane potential, which was associated with the activation of caspases (caspase-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase. However, a pan-caspase inhibitor significantly blocked the SGT-induced apoptosis and growth suppression in AGS cells. This study suggests that SGT induces caspase-dependent apoptosis through an extrinsic pathway by upregulating Fas, as well as through an intrinsic pathway by modulating Bcl-2 family members in AGS cells. The results suggest that SGT may be a potential chemotherapeutic agent for the control of human gastric cancer cells. However, further studies will be needed to confirm the potential of SGT in cancer prevention and therapy in an in vivo model and to identify biological active compounds of SGT.

Exogenous Morphine Inhibits Human Gastric Cancer MGC-803 Cell Growth by Cell Cycle Arrest and Apoptosis Induction

  • Qin, Yi;Chen, Jing;Li, Li;Liao, Chun-Jie;Liang, Yu-Bing;Guan, En-Jian;Xie, Yu-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1377-1382
    • /
    • 2012
  • Morphine is not only an analgesic treating pain for patients with cancer but also a potential anticancer drug inhibiting tumor growth and proliferation. To gain better insight into the involvement of morphine in the biological characteristics of gastric cancer, we investigated effects on progression of gastric carcinoma cells and the expression of some apoptosis-related genes including caspase-9, caspase-3, survivin and NF-${\kappa}B$ using the MGC-803 human gastric cancer cell line. The viability of cells was assessed by MTT assay, proliferation by colony formation assay, cell cycle progression and apoptosis by flow cytometry and ultrastructural alteration by transmission electron microscopy. The influences of morphine on caspase-9, caspase-3, survivin and NF-${\kappa}B$ were evaluated by semi-quantitative RT-PCR and Western blot. Our data showed that morphine could significantly inhibit cell growth and proliferation and cause cell cycle arrest in the G2/M phase. MGC-803 cells which were incubated with morphine also had a higher apoptotic rate than control cells. Morphine also led to morphological changes of gastric cancer cells. The mechanism of morphine inhibiting gastric cancer progression in vitro might be associated with activation of caspase-9 and caspase-3 and inhibition of survivin and NF-${\kappa}B$.

Effect of AC-264, a Novel Indole Derivative, on Apoptosis in HL-60 Cells

  • Lee, Kyeong;Kwon, Ok-Kyoung;Xia, Yan;Ahn, Kyung-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3777-3781
    • /
    • 2010
  • The anticancer effect and apoptotic mechanism of a novel indole derivative AC-264, a lead derived from a chemical library, were investigated in human promyelocytic leukemia HL-60 cells. HL-60 cells treated with AC-264 at various concentrations showed the morphological features of apoptosis, such as plasma membrane blebbing and cell shrinkage. AC-264 exhibited cytotoxic effect in various cancer cell lines with different degrees of potency. Especially, AC-264 was effective on increasing the population of apoptotic cells in HL-60 cells, as detected by the number of cells stained with Annexin V and PI. Furthermore, AC-264 activated caspase-3 enzyme activity and induced internucleosomal DNA fragmentation. These results indicated that AC-264 produces anti-cancer effect via apoptotic cell death by activating caspase-3 and inducing internucleosomal DNA fragmentation in HL-60 cells.