• Title/Summary/Keyword: Apical cell

Search Result 198, Processing Time 0.028 seconds

Mitochondrial Dynamics in Red Algae. 3. Filament Apices in Colaconemacaespitosum (Acrochaetiales) and Antithamnion cruciatum (Ceramiales)

  • Garbary, David J.;Zuchang, Pei
    • ALGAE
    • /
    • v.21 no.3
    • /
    • pp.323-332
    • /
    • 2006
  • Mitochondrial distribution and abundance were assessed during the growth of apical and subapical cells in the red algae Colaconema caespitosum (J. Agardh) Jackelman, Stegenga and Bolton and Antithamnion cruciatum (C. Agardh) Nägeli after staining with 3,3’-dihexyloxacarbocyanine iodide [DiOC6(3)] and 2,4’-dimethylaminostyryl-Nethylpyridinium iodide (DASPEI). In fully elongate apical cells of C. caespitosum there were 100-120 mitochondria. During apical cell enlargement and division there is a doubling and then halving of the mitochondrial numbers. Apical cells prior to cytokinesis in young filaments are smaller than in mature filaments (ca. 50 and 100 μm long, respectively) and have fewer mitochondria (ca. 100 and 120 mitochondria per cell, respectively). In older vegetative cells mitochondria tend to aggregate at opposite ends of the cells with some mitochondria associated with the central nucleus or at points of apparent branch initiation. There is a greater density of mitochondria in apical cells of smaller versus larger plants (one mitochondrion per 6.3 μm3 and 9.8 μm3, respectively), suggesting that apical cells of younger plants may be more metabolically active. Male and female gametophytic thalli of Antithamnion cruciatum had similar numbers of mitochondria in apical cells of indeterminate axes, as did gametophytic and sporophytic thalli. There were about 40-50 mitochondria in fully elongated apical cells with about half this number in newly divided apical and subapical cells. Apical cells of determinate branches had more mitochondria (60-77) than indeterminate branches (60-70 vs. 40-50). In both species and in all cell types mitochondrial numbers were highly correlated with cell size.

The prevalence of apical periodontitis in patients prior to hematopoietic cell transplantation: a systematic review

  • Letícia Taina de Oliveira Lemes;Carolina Horn Troian-Michel;Theodoro Weissheimer;Marcus Vinicius Reis So
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.2
    • /
    • pp.22.1-22.12
    • /
    • 2024
  • Objectives: This systematic review addressed the question: "What is the prevalence of apical periodontitis in patients prior to hematopoietic cell transplantation?" Materials and Methods: A systematic search was conducted in MEDLINE/PubMed, Cochrane Library, Scopus, Web of Science, Embase, and Grey Literature Report. Eligibility criteria were based on the condition, content, and population strategy: the condition was the radiographic prevalence of apical periodontitis, the content comprised patients scheduled for hematopoietic stem cell transplantation, and the population consisted of adult and pediatric patients. The revised Risk of Bias in Nonrandomized Studies of Exposure tool was used to assess the quality of studies. The Grading Recommendations Assessments, Development, and Evaluation (GRADE) tool was used to assess the quality of evidence. Results: Eight studies were included in this review. The average number of patients with apical periodontitis was 15.65% (range, 2.1%-43.34%). One study was classified as having a very high risk of bias, 1 with a high risk of bias, and 6 with some concern for bias. GRADE analysis showed a very low certainty of evidence. Significant limitations concerning the absence of control over confounding variables were identified. Conclusions: With the caveat of the very low quality of evidence in the studies reviewed, there was a low to moderate prevalence of apical periodontitis in patients prior to undergoing hematopoietic cell transplantation.

Transport of Organic Cations across Caco-2 Cell Monolayers

  • Kim, Kyong;Chung, Suk-Jae;Shim, Chang-Koo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.415.1-415.1
    • /
    • 2002
  • Apical to basal transport of organic cations (OCs) such as tributylmethylammonium (TBuMA), triethyimethylammonium (TEMA). 1-methyl-4-phenylpyridinium (MPP), and berberine across Caco-2 cell monolayers was measured to elucidate the intestinal absorption of OCs. Basal to apical transport of MPP and berberine was larger than apical to basal transport and showed temperature dependency and concentration dependency. indicating that MPP and berberine are secreted into the inteslinal lumen. (omitted)

  • PDF

Transepithelial Transport of Organic Cation and Its Inhibition by Sulfhydryl and Carboxyl Reagents in Opossum Kidney Cell Monolayer

  • Woo, Jae-Suk;Oh, Se-Ok;Jung, Jin-Sup;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.53-62
    • /
    • 1996
  • Transepithelial transport of tetraethylammonium (TEA) was studied in monolayers of opossum kidney cells cultured on permeable membrane filters. $[^{14}C]-TEA$ was transported across the OK cell monolayer from basolateral to apical side by a saturable process which can be stimulated by acidification of the apical medium. The apparent Michaelis-Menten constant $(K_{m})$ and the maximum velocity$(V_{max})$ for the transport were $41\;{\mu}M$ and 147 pmole/ mg protein/ min, respectively. The transport was significantly inhibited by unlabelled TEA, amiloride, cimetidine, choline, and mepiperphenidol added to the basolateral side at 1 mM and was slightly inhibited by 5 mM $N_{1}-methylnicotinamide\;(NMN).$ Unlabelled TEA added to the apical side stimulated the $basolateral-to-apical\;{^{14}C}-TEA$ transport, suggesting that the TEA self-exchange mechanism was involved at the apical membrane. Sulfhydryl reagents such as ${\rho}-chloromercuribenzoic\;acid\;(PCMB)\;and \;{\rho}-chloro-mercuribenzene\;sulfonate \;(PCMBS)$ and carboxyl reagents such as N,N'-dicyclohexylcarbodiimidem (DCCD) and N-ethoxy-carbonyl-2-ethoxy-1,2-dihydro-quinoline(EEDQ) inhibited the TEA transport at both the basolateral and apical membranes of the OK cell monolayer. These results suggest that OK cell monolayers possess a vectorial transport system for organic cations which is similar to that for organic cation secretion in the renal proximal tubule.

  • PDF

The Morphological Study of the Midgut Epithelium during the Metamorphosis of Pine Caterpillar (變態에 따른 솔나방(Dendrolimus spectabilis Butler) 中腸上皮의 形態的 考察)

  • 김정상;김우갑;김창환
    • The Korean Journal of Zoology
    • /
    • v.28 no.3
    • /
    • pp.151-165
    • /
    • 1985
  • The morphological changes of the midgut epithelium during the metamorphosis of pine caterpillar are observed with light and electron microscope, being divided into 5 stages from the 8th instar larva to just after pupation. The midgut epithelium of 8th instar larva is composed of columnar cell, goblet cell, regenerative cell, and endocrine cell. The secretorials are arranged on the nuclear membrane in the columnar cell of the midgut epithelium in the 8th instar larva, and lysosomes are augmented in the apical portion. Cytoplasmic extrusions are observed in the apical surface of columnar cell but they have no cell organells. Nucleus, mitochondria, rER, Golgi complex, and free ribsomes are observed in the regenerative cell. Regenerative cells are differentiated into the form of goblet cell, and vacuoles are gradually increased in the cytoplasm. Just pupa stage, the materials, which appears to be mainly composed of Ca, are observed in the circular form and goblet cavity of regenerative cell are detached to lumen. As a result, it reflects the process of the degeneration of the midgut epithelium that lysosomes are gradually augmented in the columnar cell, that nuclear materials are removed to cytoplasm, and that cytoplasmic extrusions are observed in the apical surface. And though regenerative cells are differentiated into the form of the goblet cell, it is believed that goblet cavity is detached from regenerative cell to the lumen and midgut epithelium of pupa stage is formed.

  • PDF

Scanning Electron Microscopic Study of the Sertoli Cell in the Korean Native Bull (한우 Sertoli 세포의 주사전자현미경적 연구)

  • 이성호;박영석
    • Journal of Veterinary Clinics
    • /
    • v.16 no.2
    • /
    • pp.448-453
    • /
    • 1999
  • The three-dimensional structure of the Sertoli cell in the Korean native bull was investigated by scanning electron microscopy. Morphologically, four types of Sertoli cell processes were evident: 1) sheet-like processes, 2) sleeve-like processes, 3) bough-like processes and 4) finger-like processes. The sheet-like processes rested upon more than half of the surface of each spermatogonia, spermatocyte and spermatid. Sleeve-like processes, bough-like processes and finger-like processes are observed in the middle and apical portion of seminiferous tubule. All Sertoli cell processes are originated from Sertoli cell column. Just before spermiation, the apical sheet-like processes are shifted from their position at the spermatid head, and bough-like processes covered the disengaged residual body, after which the residual body was no longer evident in the tubule. Though the mechanism for this elimination is not known, the process suggests a reciprocity between the Sertoli and germ cells.

  • PDF

Monosiphonous growth and cell-death in an unusual Bostrychia (Rhodomelaceae, Rhodophyta): B. anomala sp. nov.

  • West, John A.;Loiseaux de Goer, Susan;Zuccarello, Giuseppe C.
    • ALGAE
    • /
    • v.28 no.2
    • /
    • pp.161-171
    • /
    • 2013
  • A morphologically distinct lineage within the Bostrychia moritziana-B. radicans species complex is described as a new species. Bostrychia anomala has thalli with branched monosiphonous filaments with apical cell divisions. The species has terminal tetrasporangial stichidia, each subtending cell bearing tetrasporangia with 2 cover cells. Discharged spores divide transversely, the lower cell first forming a narrow rhizoid and the upper cell forming a monosiphonous shoot. Females have subterminal procarps and males have terminal spermatangial stichidia. Carposporophytes are spherical. Isolates in culture show a pattern of cell death not associated with injury, reminiscent of programmed cell death. Bostrychia anomola shows cell death at intervals along the filaments resulting in division of adjacent cells on either side of the dead cell re-joining the filament; cell division of only one adjacent cell resulting in branching at that site; or filaments fragmenting at the cell death point with adjacent cells forming new apical cells, a means of thallus propagation. The cell death pattern could be a method of filament propagation in the mangrove environment where sexual reproduction is rare.

Transepithelial transport and dynamic changes on apical membrane area of turtle bladder (Turtle Bladder 정단세포막(丁端細胞膜)의 역동적(力動的) 변화와 상피수송(上皮輸送)에 관하여)

  • Jeon, Jin-Seok
    • Applied Microscopy
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 1993
  • The present study was carried out to analyze the evidence of membrane recycling, and the regulation of cellular transport by dynamic changes in apical membrane area that functionally interacts with the number of cytoplasmic vesicles. Under scanning electron micrographs, turtle bladder mucosa contain three main type of cells; granular cells and carbonic anhydrase (CA)-rich cells, deviding into a and b type of epithelial cell. The granular cell is the majority cell type of the mucosa comprising 80% of the total cell number. The remaining 20% of the cells are characteristically rich in carbonic anhydrase. Uptake of HRP was detected in the most vacuoles or tubulovesicles in both type of CA-rich cells in the turtle bladder, indicating that the part of plasma membrane was internalized in the apical cytoplasmic vacuoles. It seems quite likely that CA-rich cells possess intracellular vesicles carrying proton pumps which are recycling back to the apical plasma membrane. In turtle bladder, the granular cells actively secrete large quantities of mucin and other proteins by an exocytotic mechanism in an apparently constitutive fashion. The possibility that bladder epithelial cells secrete mucin via a regulated secretory pathway has not been rigorously examined and much is still to be determined about these issues from this cell type.

  • PDF

Mechanism of Intestinal Transport of an Organic Cation, Tributylmethylammonium in Caco-2 Cell Monolayers

  • Hong Soon-Sun;Moon Sang-Cherl;Shim Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.318-322
    • /
    • 2006
  • Many quaternary ammonium salts are incompletely absorbed after their oral administration and may also be actively secreted into the intestine. However, the underlying mechanism(s) that control the transport of these cations across the intestinal epithelium is not well understood. In this study, the mechanism of absorption of quaternary ammonium salts was investigated using Caco-2 cell monolayers, a human colon carcinoma cell line. Tributylmethylammonium (TBuMA) was used as a model quaternary ammonium salts. When TBuMA was administrated at a dose of 13.3 imole/kg via iv and oral routes, the AUC values were $783.7{\pm}43.6\;and\;249.1{\pm}28.0{\mu}mole\;min/L$ for iv and oral administration, indicating a lower oral bioavailability of TBuMA $(35.6\%)$. The apparent permeability across Caco-2 monolayers from the basal to the apical side was 1.3 times (p<0.05) greater than that from the apical to the basal side, indicating a net secretion of TBuMA in the intestine. This secretion appeared to be responsible for the low oral bioavailability of the compound, probably mediated by p-gp (p-glycoprotein) located in the apical membrane. In addition, the uptake of TBuMA by the apical membrane showed a $Na^+$ dependency. Thus, TBuMA appears to absorbed via a $Na^+$ dependent carrier and is then secreted via p-gp related carriers.

Ultrastructure of the Eye in the Snail, Incilaria fruhstorferi (산민달팽이 (Incilaria fruhstorferi) 눈의 미세구조)

  • Chang, Nam-Sub;Han, Jong-Min;Lee, Kwang-Joo
    • Applied Microscopy
    • /
    • v.28 no.3
    • /
    • pp.363-377
    • /
    • 1998
  • After the investigation on the eye of Incilaria fruhstorieri with light and electron microscopes, the following results were obtained. The eye of Incilaria fruhstorferi comprises cornea, lens, vitreous body, retina, and optic nerve inward from the outside. Cornea is composed of squamous, cuboid, columnar and irregular cells, which appear to be light due to their low electron density. In their cytoplasms, glycogen granules, multivesicular body, and nucleus were observed. Vitreous body, located behind non-cellular transparent lens, is filled with long and short microvilli protruding from the retinal epithelia. Retinal epithelium, the organ to perceive objects, is divided into four parts; microvillar layer pigment layer, nuclear layer, and neutrophils layer, from the apical portion. Microvillar layer consists of the type-I photoreceptor cells and pigmented granule cells. In the apical portion of their cytoplasms, long microvilli (length, $19{\mu}m$) , short microvilli (length, $8{\mu}m$), and rolled microvilli grow thick in the irregular and mixed forms. Photoreceptor cells are classified into type-I and type-II, according to their structures. The type-I cell has the apical portion rising roundly like a fan and the lower part which looks like the helve of a fan. In the cytoplasm of the apical portion, there are clear vesicles, cored vesicles, ovoid mitochondria, and microfilaments, and in the cytoplasm of the lower part, photic vesicles with their diameters about 60nm aggregate densely. The type-II photoreceptor cell, located at the lower end of the type-I cells, has a very large ovoid nucleus 3nd no microvilli. In the cytoplasm of the type-II cell, the photic vesicles with sizes 60nm aggregate more densely than in the cytoplasm of the type-I cell. Pigmented cells are classified into type-A and type-B, according to their structures. The type-A is identified to be a large cell containing round granules (diameter, $0.5{\mu}m$) of very high electron density, while the type-B is identified as a small cell where the irregular granules (diameter, $0.6{\mu}m$) of a little lower electron density amalgamate. Nuclear layer ranges from the bottom of pigment layer to the top of the capsule, and contains three kinds of nuclei (nuclei of the type-II photoreceptor cell, pigmented granule cell, and accessory neuron). The capsules covering the outmost part of the eyeball are composed of collagenous fiber and three longitudinal muscle layers (the thickness of each longitudinal muscle layer, $0.4{\mu}m$) and thick circular muscle layer (thickness, $0.3{\mu}m$). Around the capsules, there is a neurophile layer consisting of neurons and nerve fibers. Each neuron has a relatively large ovoid nucleus for its cytoplasm, and in the karyosome, large lumps of keterochromatin form a wheel nucleus.

  • PDF