Browse > Article
http://dx.doi.org/10.4490/ALGAE.2006.21.3.323

Mitochondrial Dynamics in Red Algae. 3. Filament Apices in Colaconemacaespitosum (Acrochaetiales) and Antithamnion cruciatum (Ceramiales)  

Garbary, David J. (Department of Biology, St. Francis Xavier University, Antigonish)
Zuchang, Pei (Department of Biology, St. Francis Xavier University, Antigonish)
Publication Information
ALGAE / v.21, no.3, 2006 , pp. 323-332 More about this Journal
Abstract
Mitochondrial distribution and abundance were assessed during the growth of apical and subapical cells in the red algae Colaconema caespitosum (J. Agardh) Jackelman, Stegenga and Bolton and Antithamnion cruciatum (C. Agardh) Nägeli after staining with 3,3’-dihexyloxacarbocyanine iodide [DiOC6(3)] and 2,4’-dimethylaminostyryl-Nethylpyridinium iodide (DASPEI). In fully elongate apical cells of C. caespitosum there were 100-120 mitochondria. During apical cell enlargement and division there is a doubling and then halving of the mitochondrial numbers. Apical cells prior to cytokinesis in young filaments are smaller than in mature filaments (ca. 50 and 100 μm long, respectively) and have fewer mitochondria (ca. 100 and 120 mitochondria per cell, respectively). In older vegetative cells mitochondria tend to aggregate at opposite ends of the cells with some mitochondria associated with the central nucleus or at points of apparent branch initiation. There is a greater density of mitochondria in apical cells of smaller versus larger plants (one mitochondrion per 6.3 μm3 and 9.8 μm3, respectively), suggesting that apical cells of younger plants may be more metabolically active. Male and female gametophytic thalli of Antithamnion cruciatum had similar numbers of mitochondria in apical cells of indeterminate axes, as did gametophytic and sporophytic thalli. There were about 40-50 mitochondria in fully elongated apical cells with about half this number in newly divided apical and subapical cells. Apical cells of determinate branches had more mitochondria (60-77) than indeterminate branches (60-70 vs. 40-50). In both species and in all cell types mitochondrial numbers were highly correlated with cell size.
Keywords
Acrochaetiaceae; Antithamnion; apical cells; Colaconema; DiOC6(3); DASPEI; cell elongation; DAPI; mitochondria; Rhodophyta;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Broadwater S. and Scott J. 1986. Three-dimensional reconstruction of the chondriome of the unicellular red alga Rhodella reticulata. J. Cell Sci. 84: 213-219
2 Broadwater S., Scott J. and Pobiner B. 1986a. Ultrastructure of meiosis in Dasya baillouviana (Rhodophyta). I. Prophase I. J. Phycol. 22: 490-500   DOI
3 Broadwater S., Scott J. and Pobiner B. 1986b. Ultrastructure of meiosis in Dasya baillouviana (Rhodophyta). II. Prometaphase I — telophase II and post-division nuclear behavior. J. Phycol. 22: 501-512   DOI
4 Chida Y. and Ueda K. 1986. Mitochondrial number and form change during autospore formation in Chlorococcum infusionum (Schrank) Meneghini (Chlorococcales, Chlorophyta). Phycologia 25: 503-509   DOI
5 Garbary D.J. and Pei Zuchang. 2000a. Mitochondrial dynamics in red algae. 1. Monospore germination in Audouinella botryocarpa (Acrochaetiales). Algae 15: 143-147
6 Kuroiwa T. 1998. The primitive red algae Cyanidium caldarium and Cyanidioschyzon merolae as model systems for investigating the dividing apparatus of mitochondria and plastids. Bioessays 20: 344-354   DOI   ScienceOn
7 Guiry M.D. and Cunningham E. 1984. Photoperiodic and temperature responses in the reproduction of north-eastern Atlantic Gigartina acicularis (Rhodophyta: Gigartinales). Phycologia 23: 357-367   DOI
8 Delivopoulos S.G. and Diannelidis B.E. 1990-1991a. Ultrastructure of carpospore differentiation in the red alga Ceramium strictum Greville and Harvey (Ceramiales, Ceramiaceae). Ann. Sci. Nat., Bot. (Paris), Serie 13: 11: 9-21
9 Garbary D.J. and Pei Zuchang. 2000b. Mitochondrial dynamics in red algae. 2. Monosporogenesis in Audouinella botryocarpa (Acrochaetiales). Algae 15: 149-153
10 Goff L.J. and Coleman A.W. 1984. Elucidation of fertilization and development in a red alga by quantitative DNA microspectrofluorometry. Develop. Biol. 102: 173-194   DOI   ScienceOn
11 Guiry M.D., Kee W.R. and Garbary D.J. 1987. Morphology, temperature and photoperiodic responses in Audouinella botryocarpa (Harvey) Woelkerling (Acrochaetiaceae, Rhodophyta) from Ireland. Giorn. Bot. Ital. 121: 229-246
12 Hatano K. and Ueda K. 1988. Changes in the shape of mitochondria during the asexual reproductive cycle in Hydrodictyon reticulatum. Eur. J. Cell Biol. 47: 193-197
13 Hayashi Y. and Ueda K. 1989. The shape of mitochondria and the number of mitochondrial nucleoids during the cell cycle of Euglena gracilis. J. Cell Sci. 93: 565-570
14 Jackelman J.J., Stegenga H.S. and Bolton J.J. 1991. The marine benthic flora of the Cape Hangklip area and its phytogeographical affinities. South African J. Bot. 57: 295-304   DOI
15 Kuroiwa T. 2000. The discovery of the division apparatus of plastids and mitochondria. J. Elect. Micros. 49: 123-134   DOI   ScienceOn
16 Maggs C.A. and Hommersand M. 1993. Seaweeds of the British Isles, Vol. 1: Rhodophyta, Pt. 3A: Ceramiales. Natural History Museum, London
17 McDonald A.R., Garbary D.J. and Duckett J.G. 1993. Rhodamine-phalloidin staining of F-actin in Rhodophyta. Biotech. Histochem. 68: 91-98   DOI
18 Miyagishima S., Kuroiwa H. and Kuroiwa T. 2001. The timing and manner of disassembly of the apparatuses for chloroplast and mitochondrial division in the red alga Cyanodioschyzon merolae. Planta 212: 517-528   DOI
19 Misumi O., Matsuzaki M., Nozaki H., Miyagishima S., Mori T., Nishida K., Yagisawa F., Yoshida Y., Kuroiwa H. andKuroiwa T. 2005. Cyanodioscyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. Plant Physiol. 137: 567-585   DOI   ScienceOn
20 Delivopoulos S.G. and Diannelidis B.E. 1990-1991b. Ultrastructure of carpospore differentiation in the red alga Alsidium corallinum C. Agardh (Ceramiales, Rhodomelaceae). Ann. Sci. Nat., Bot. (Paris), Serie 13, 11: 23-31
21 Suzuki K., Ehara T., Osafuni T., Kuroiwa H., Kawano S. and Kuroiwa T. 1994. Behavior of mitochondria, chloroplasts and their nuclei during mitotic cycle in the ultramicroalga Cyanidioschyzon merolae. Eur. J. Cell Biol. 63: 280-288
22 Pueschel C.M. and Cole K.M. 1985. Ultrastructure of germinating carpospores of Porphyra variegata (Kjellm.) Hus (Bangiales, Rhodophyta). J. Phycol. 21: 146-154   DOI
23 Russell C.A., Garbary D.J. and Guiry M.D. 1993. New mitochondrial associations in the red algae Griffithsia pacifica and Ceramium strictum (Ceramiaceae, Rhodophyta). J. Phycol. 29(suppl.): 8
24 Schnepf E. 1992. Electron microscopical studies of Thorea ramosissima (Thoreaceae, Rhodophyta): taxonomic implications of Thorea pit plug ultrastructure. Plant Syst. Evol. 181: 233-244   DOI
25 Tsekos I. and Schnepf E. 1985. Ultrastructure of the early stages of carposporophyte development in the red alga Chondria tenuissima (Rhodomelaceae, Ceramiales). Pl. Syst. Evol. 151:1-18   DOI
26 Garbary D.J. 1979. Patterns of cell elongation in some Audouinella spp. (Acrochaetiaceae, Rhodophyta). J. Mar. Biol. Ass. U.K. 59: 951-960   DOI
27 Melkonian M. and Berns B. 1983. Zoospore ultrastructure in the green alga Friedmannia israelensis: An absolute configuration analysis. Protoplasma 114: 67-84   DOI
28 Garbary D.J., McDonald A.R. and Duckett J.G. 1992. Visualization of the cytoskeleton in red algae using fluorescent labelling. New Phytol. 120: 435-444   DOI   ScienceOn
29 Tornbom L. and Oliveira L. 1993. Wound-healing in Vaucheria longicaulis Hoppaugh var. macounii Blum. 1. Cytomorphological study of the wound response. New Phytol. 124: 121-133   DOI   ScienceOn
30 McFadden G.I. and Wetherbee R. 1982. Serial reconstruction of the mitochondrial reticulum in the antarctic flagellate, Pyramimonas gelidicola (Prasinophyceae, Chlorophyta). Protoplasma 111: 79-82   DOI
31 Pueschel C.M. 1990. Cell structure. In: Cole K.M. and Sheath R.G. (eds), Biology of the Red Algae. Cambridge University Press, Cambridge. pp. 7-41
32 Garbary D.J. and McDonald A.R. 1998. Molecules, organelles and cells: fluorescence microscopy and red algal development. In: Cooksey K.E. (ed.), Molecular Approaches to the Study of the Oceans. Chapman & Hall, London. pp. 409-422